Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
959 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ 0.7153 0.8822 0.8108 [X:[], M:[0.822, 1.0593, 0.8597, 1.0216, 0.9784, 0.9407], q:[0.6484, 0.5297], qb:[0.4919, 0.4488], phi:[0.4703]] [X:[], M:[[6, 6], [-2, -2], [3, 5], [1, -1], [-1, 1], [2, 2]], q:[[-5, -5], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[1, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_6$, $ \phi_1^2$, $ M_5$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1^2$, $ \phi_1q_1q_2$, $ M_1M_3$, $ M_3^2$, $ M_1M_6$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ M_1M_5$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_3M_5$, $ M_3M_4$, $ M_6^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_5M_6$, $ M_5\phi_1^2$, $ M_5^2$, $ M_3q_1\tilde{q}_2$, $ M_4M_6$, $ M_4\phi_1^2$ . -3 t^2.47 + t^2.58 + 2*t^2.82 + t^2.94 + t^3.06 + t^3.29 + t^4.1 + t^4.23 + t^4.35 + t^4.36 + t^4.48 + t^4.59 + t^4.7 + t^4.83 + t^4.93 + t^4.95 + t^5.05 + t^5.16 + 2*t^5.29 + t^5.3 + 2*t^5.4 + t^5.51 + 3*t^5.64 + 2*t^5.76 + t^5.87 + t^5.89 - 3*t^6. + t^6.11 + t^6.23 - t^6.24 - t^6.36 - t^6.47 + t^6.57 + t^6.58 - t^6.6 + t^6.68 + t^6.7 + t^6.81 + t^6.83 + 3*t^6.93 + t^6.94 + t^7.04 + 3*t^7.05 + 4*t^7.17 + 2*t^7.18 + 3*t^7.3 + t^7.39 + t^7.4 + t^7.41 + t^7.43 + t^7.51 + 2*t^7.52 - t^7.54 + t^7.62 + t^7.64 + t^7.65 + t^7.74 + 2*t^7.75 + t^7.77 + 2*t^7.87 + 2*t^7.98 + t^7.99 - 2*t^8.01 + t^8.09 + 3*t^8.11 + t^8.12 + t^8.21 + 3*t^8.22 + t^8.24 + 2*t^8.34 - t^8.35 + 2*t^8.45 + t^8.47 - t^8.48 + t^8.59 + t^8.69 + t^8.71 + t^8.72 + 2*t^8.81 - 8*t^8.82 + t^8.84 - 2*t^8.94 - t^4.41/y - t^6.88/y - t^6.99/y - t^7.23/y + t^7.59/y + t^7.83/y + t^7.95/y + t^8.05/y + (2*t^8.29)/y + (3*t^8.4)/y + t^8.51/y + t^8.53/y + (2*t^8.64)/y + (3*t^8.76)/y + t^8.87/y + (2*t^8.89)/y - t^4.41*y - t^6.88*y - t^6.99*y - t^7.23*y + t^7.59*y + t^7.83*y + t^7.95*y + t^8.05*y + 2*t^8.29*y + 3*t^8.4*y + t^8.51*y + t^8.53*y + 2*t^8.64*y + 3*t^8.76*y + t^8.87*y + 2*t^8.89*y g1^6*g2^6*t^2.47 + g1^3*g2^5*t^2.58 + 2*g1^2*g2^2*t^2.82 + (g2*t^2.94)/g1 + (g1*t^3.06)/g2 + t^3.29/(g1^5*g2^3) + g1*g2^5*t^4.1 + g1^3*g2^3*t^4.23 + g2^2*t^4.35 + g1^5*g2*t^4.36 + g1^2*t^4.48 + t^4.59/(g1*g2) + t^4.7/(g1^4*g2^2) + t^4.83/(g1^2*g2^4) + g1^12*g2^12*t^4.93 + t^4.95/(g1^5*g2^5) + g1^9*g2^11*t^5.05 + g1^6*g2^10*t^5.16 + 2*g1^8*g2^8*t^5.29 + t^5.3/(g1^9*g2^9) + 2*g1^5*g2^7*t^5.4 + g1^2*g2^6*t^5.51 + 3*g1^4*g2^4*t^5.64 + 2*g1*g2^3*t^5.76 + (g2^2*t^5.87)/g1^2 + g1^3*g2*t^5.89 - 3*t^6. + t^6.11/(g1^3*g2) + t^6.23/(g1^6*g2^2) - t^6.24/(g1*g2^3) - t^6.36/(g1^4*g2^4) - t^6.47/(g1^7*g2^5) + g1^7*g2^11*t^6.57 + t^6.58/(g1^10*g2^6) - t^6.6/(g1^5*g2^7) + g1^4*g2^10*t^6.68 + g1^9*g2^9*t^6.7 + g1^6*g2^8*t^6.81 + g1^11*g2^7*t^6.83 + 3*g1^3*g2^7*t^6.93 + g1^8*g2^6*t^6.94 + g2^6*t^7.04 + 3*g1^5*g2^5*t^7.05 + 4*g1^2*g2^4*t^7.17 + 2*g1^7*g2^3*t^7.18 + 3*g1^4*g2^2*t^7.3 + (g2^2*t^7.39)/g1^4 + g1^18*g2^18*t^7.4 + g1*g2*t^7.41 + g1^6*t^7.43 + g1^15*g2^17*t^7.51 + (2*t^7.52)/g1^2 - (g1^3*t^7.54)/g2 + g1^12*g2^16*t^7.62 + t^7.64/(g1^5*g2) + t^7.65/g2^2 + g1^9*g2^15*t^7.74 + 2*g1^14*g2^14*t^7.75 + t^7.77/(g1^3*g2^3) + 2*g1^11*g2^13*t^7.87 + 2*g1^8*g2^12*t^7.98 + t^7.99/(g1^9*g2^5) - (2*t^8.01)/(g1^4*g2^6) + g1^5*g2^11*t^8.09 + 3*g1^10*g2^10*t^8.11 + t^8.12/(g1^7*g2^7) + g1^2*g2^10*t^8.21 + 3*g1^7*g2^9*t^8.22 + t^8.24/(g1^10*g2^8) + 2*g1^4*g2^8*t^8.34 - g1^9*g2^7*t^8.35 + 2*g1*g2^7*t^8.45 + g1^6*g2^6*t^8.47 - t^8.48/(g1^11*g2^11) + t^8.59/(g1^14*g2^12) + g2^4*t^8.69 + g1^5*g2^3*t^8.71 + g1^10*g2^2*t^8.72 + (2*g2^3*t^8.81)/g1^3 - 8*g1^2*g2^2*t^8.82 + g1^7*g2*t^8.84 - (2*g2*t^8.94)/g1 - (g1*g2*t^4.41)/y - (g1^7*g2^7*t^6.88)/y - (g1^4*g2^6*t^6.99)/y - (g1^3*g2^3*t^7.23)/y + t^7.59/(g1*g2*y) + t^7.83/(g1^2*g2^4*y) + t^7.95/(g1^5*g2^5*y) + (g1^9*g2^11*t^8.05)/y + (2*g1^8*g2^8*t^8.29)/y + (3*g1^5*g2^7*t^8.4)/y + (g1^2*g2^6*t^8.51)/y + (g1^7*g2^5*t^8.53)/y + (2*g1^4*g2^4*t^8.64)/y + (3*g1*g2^3*t^8.76)/y + (g2^2*t^8.87)/(g1^2*y) + (2*g1^3*g2*t^8.89)/y - g1*g2*t^4.41*y - g1^7*g2^7*t^6.88*y - g1^4*g2^6*t^6.99*y - g1^3*g2^3*t^7.23*y + (t^7.59*y)/(g1*g2) + (t^7.83*y)/(g1^2*g2^4) + (t^7.95*y)/(g1^5*g2^5) + g1^9*g2^11*t^8.05*y + 2*g1^8*g2^8*t^8.29*y + 3*g1^5*g2^7*t^8.4*y + g1^2*g2^6*t^8.51*y + g1^7*g2^5*t^8.53*y + 2*g1^4*g2^4*t^8.64*y + 3*g1*g2^3*t^8.76*y + (g2^2*t^8.87*y)/g1^2 + 2*g1^3*g2*t^8.89*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1490 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ M_3M_7$ 0.7048 0.8625 0.8171 [X:[], M:[0.86, 1.0467, 0.9067, 1.0, 1.0, 0.9533, 1.0933], q:[0.6167, 0.5233], qb:[0.4767, 0.4767], phi:[0.4767]] t^2.58 + 2*t^2.86 + 2*t^3. + 2*t^3.28 + 3*t^4.29 + 2*t^4.43 + t^4.57 + 2*t^4.71 + t^4.85 + t^5.13 + t^5.16 + 2*t^5.44 + 2*t^5.72 + 4*t^5.86 - 3*t^6. - t^4.43/y - t^4.43*y detail
1488 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ M_3^2$ 0.6977 0.8546 0.8164 [X:[], M:[0.9346, 1.0218, 1.0, 0.9564, 1.0436, 0.9782], q:[0.5545, 0.5109], qb:[0.4455, 0.5327], phi:[0.4891]] t^2.8 + t^2.87 + 2*t^2.93 + t^3. + t^3.13 + t^3.26 + t^4.14 + t^4.34 + t^4.4 + t^4.47 + t^4.53 + t^4.6 + 2*t^4.66 + t^4.73 + t^4.79 + t^5.61 + 2*t^5.74 + 2*t^5.8 + 3*t^5.87 + t^5.93 - 2*t^6. - t^4.47/y - t^4.47*y detail
1491 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ M_5M_7$ 0.7145 0.8801 0.8118 [X:[], M:[0.8193, 1.0602, 0.8828, 0.9968, 1.0032, 0.9398, 0.9968], q:[0.6506, 0.5301], qb:[0.4666, 0.4731], phi:[0.4699]] t^2.46 + t^2.65 + 2*t^2.82 + 2*t^2.99 + t^3.37 + t^4.21 + t^4.23 + t^4.25 + t^4.4 + t^4.42 + t^4.59 + t^4.76 + t^4.78 + t^4.92 + t^4.95 + t^5.11 + 2*t^5.28 + t^5.3 + t^5.31 + t^5.45 + t^5.47 + 4*t^5.64 + 3*t^5.81 + 2*t^5.98 - 4*t^6. - t^4.41/y - t^4.41*y detail
1489 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ M_7q_1\tilde{q}_2$ 0.7262 0.9027 0.8045 [X:[], M:[0.7842, 1.0719, 0.8561, 1.0, 1.0, 0.9281, 0.8561], q:[0.6798, 0.536], qb:[0.464, 0.464], phi:[0.464]] t^2.35 + 2*t^2.57 + 2*t^2.78 + 2*t^3. + 3*t^4.18 + 2*t^4.39 + t^4.61 + t^4.71 + 2*t^4.82 + 2*t^4.92 + t^5.04 + 5*t^5.14 + 4*t^5.35 + t^5.47 + 6*t^5.57 + 2*t^5.78 - 3*t^6. - t^4.39/y - t^4.39*y detail
2098 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_3X_2$ 0.57 0.695 0.8201 [X:[1.6, 1.4], M:[0.4, 1.2, 0.6, 1.0, 1.0, 0.8], q:[1.0, 0.6], qb:[0.4, 0.4], phi:[0.4]] 2*t^2.4 + 2*t^3. + 3*t^3.6 + 2*t^4.2 + 4*t^4.8 + 2*t^5.4 + 4*t^6. - t^4.2/y - t^4.2*y detail {a: 57/100, c: 139/200, X1: 8/5, X2: 7/5, M1: 2/5, M2: 6/5, M3: 3/5, M4: 1, M5: 1, M6: 4/5, q1: 1, q2: 3/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}
2097 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ + $ M_2M_6$ + $ \phi_1\tilde{q}_1^2$ 0.6051 0.7764 0.7793 [X:[], M:[1.0082, 0.9973, 0.7575, 1.2479, 0.7521, 1.0027], q:[0.4932, 0.4986], qb:[0.7493, 0.2534], phi:[0.5014]] t^2.24 + t^2.26 + t^2.27 + 2*t^3.01 + 2*t^3.02 + 2*t^3.74 + t^3.76 + t^4.46 + 2*t^4.48 + 2*t^4.5 + 2*t^4.51 + t^4.53 + t^4.55 + 2*t^5.25 + 3*t^5.26 + 3*t^5.28 + 2*t^5.3 - t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
600 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ 0.7101 0.8727 0.8137 [X:[], M:[0.8432, 1.0523, 0.8729, 1.0226, 0.9774], q:[0.6307, 0.5261], qb:[0.4964, 0.4513], phi:[0.4739]] t^2.53 + t^2.62 + t^2.84 + t^2.93 + t^3.07 + t^3.16 + t^3.25 + t^4.13 + t^4.26 + t^4.35 + t^4.4 + t^4.49 + t^4.58 + t^4.67 + t^4.8 + t^4.89 + t^5.06 + t^5.15 + t^5.21 + t^5.24 + t^5.37 + t^5.46 + t^5.55 + 2*t^5.69 + 2*t^5.78 + t^5.86 - 2*t^6. - t^4.42/y - t^4.42*y detail