Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60941 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4737 1.6793 0.8776 [X:[1.3607], M:[0.9109, 0.6874, 1.041, 0.9067], q:[0.4955, 0.4997], qb:[0.5936, 0.4932], phi:[0.3197]] [X:[[0, 0, 4]], M:[[1, 2, -12], [-1, -2, 2], [0, 0, 6], [-1, 1, -1]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.06 + t^2.72 + t^2.73 + t^2.97 + t^2.98 + t^3.12 + t^3.93 + t^4.08 + t^4.12 + t^4.23 + t^4.24 + t^4.78 + t^4.8 + t^4.88 + t^4.9 + t^5.03 + t^5.04 + 2*t^5.19 + t^5.2 + t^5.43 + 2*t^5.44 + t^5.45 + t^5.47 + t^5.69 + 2*t^5.7 + t^5.71 + t^5.84 + t^5.86 + t^5.93 + t^5.94 + t^5.96 - 3*t^6. - t^6.01 + t^6.09 + t^6.1 + t^6.14 + t^6.19 + t^6.25 + t^6.29 + t^6.39 + t^6.4 + t^6.65 + t^6.66 + t^6.8 + t^6.81 + t^6.84 + t^6.86 + t^6.89 + t^6.9 + t^6.95 + t^6.96 + 2*t^7.05 + t^7.06 + t^7.09 + t^7.1 + t^7.19 + 2*t^7.2 + t^7.22 + 2*t^7.25 + t^7.32 + t^7.34 + 2*t^7.35 + 2*t^7.36 + t^7.37 + t^7.49 + t^7.5 + t^7.52 + t^7.53 + t^7.6 + 2*t^7.62 + t^7.63 + t^7.75 + t^7.76 + 2*t^7.85 + 2*t^7.86 + t^7.88 + t^7.91 + 2*t^7.92 + t^7.99 + 2*t^8.01 + t^8.02 - 3*t^8.06 - t^8.07 + 3*t^8.15 + 5*t^8.16 + t^8.17 + t^8.18 + t^8.19 + t^8.2 + t^8.21 + t^8.25 + 2*t^8.31 + t^8.32 + t^8.35 + t^8.4 + 3*t^8.41 + 2*t^8.42 + t^8.43 + t^8.44 + t^8.45 + t^8.55 + t^8.56 + t^8.57 + t^8.58 + t^8.59 + t^8.65 + 2*t^8.67 + 2*t^8.68 + t^8.69 - 4*t^8.72 - 5*t^8.73 - t^8.75 + 2*t^8.81 + 3*t^8.82 + t^8.83 + t^8.86 + 2*t^8.88 + t^8.9 + 2*t^8.91 + 2*t^8.92 + t^8.94 - 2*t^8.97 - 3*t^8.98 - t^8.99 + t^8.88/y^2 - t^3.96/y - t^4.92/y - t^6.02/y - t^6.68/y - t^6.69/y - t^6.93/y - t^6.94/y - t^6.98/y - t^7.08/y - t^7.64/y - t^7.65/y + t^7.78/y + t^7.8/y - t^7.88/y + t^8.03/y - t^8.08/y + t^8.19/y + t^8.45/y + t^8.69/y + (2*t^8.7)/y + t^8.71/y - t^8.74/y - t^8.75/y + t^8.86/y + t^8.94/y - t^3.96*y - t^4.92*y - t^6.02*y - t^6.68*y - t^6.69*y - t^6.93*y - t^6.94*y - t^6.98*y - t^7.08*y - t^7.64*y - t^7.65*y + t^7.78*y + t^7.8*y - t^7.88*y + t^8.03*y - t^8.08*y + t^8.19*y + t^8.45*y + t^8.69*y + 2*t^8.7*y + t^8.71*y - t^8.74*y - t^8.75*y + t^8.86*y + t^8.94*y + t^8.88*y^2 (g3^2*t^2.06)/(g1*g2^2) + (g2*t^2.72)/(g1*g3) + (g1*g2^2*t^2.73)/g3^12 + (g2*g3^11*t^2.97)/g1 + g1*g2^2*t^2.98 + g3^6*t^3.12 + (g2*g3^9*t^3.93)/g1 + g3^4*t^4.08 + (g3^4*t^4.12)/(g1^2*g2^4) + (g3^10*t^4.23)/(g1*g2^2) + (g1*t^4.24)/(g2*g3) + (g3*t^4.78)/(g1^2*g2) + t^4.8/g3^10 + (g2*g3^7*t^4.88)/g1 + (g1*g2^2*t^4.9)/g3^4 + (g3^13*t^5.03)/(g1^2*g2) + g3^2*t^5.04 + (2*g3^8*t^5.19)/(g1*g2^2) + (g1*t^5.2)/(g2*g3^3) + (g3^20*t^5.43)/(g1*g2^2) + (g2^2*t^5.44)/(g1^2*g3^2) + (g1*g3^9*t^5.44)/g2 + (g2^3*t^5.45)/g3^13 + (g1^2*g2^4*t^5.47)/g3^24 + (g2^2*g3^10*t^5.69)/g1^2 + (2*g2^3*t^5.7)/g3 + (g1^2*g2^4*t^5.71)/g3^12 + (g2*g3^5*t^5.84)/g1 + (g1*g2^2*t^5.86)/g3^6 + (g2^2*g3^22*t^5.93)/g1^2 + g2^3*g3^11*t^5.94 + g1^2*g2^4*t^5.96 - 3*t^6. - (g1^2*g2*t^6.01)/g3^11 + (g2*g3^17*t^6.09)/g1 + g1*g2^2*g3^6*t^6.1 + (g3^6*t^6.14)/(g1*g2^2) + (g3^6*t^6.19)/(g1^3*g2^6) + g3^12*t^6.25 + (g3^12*t^6.29)/(g1^2*g2^4) + (g3^18*t^6.39)/(g1*g2^2) + (g1*g3^7*t^6.4)/g2 + (g2^2*g3^8*t^6.65)/g1^2 + (g2^3*t^6.66)/g3^3 + (g2*g3^3*t^6.8)/g1 + (g1*g2^2*t^6.81)/g3^8 + (g3^3*t^6.84)/(g1^3*g2^3) + t^6.86/(g1*g2^2*g3^8) + (g2^2*g3^20*t^6.89)/g1^2 + g2^3*g3^9*t^6.9 + (g3^9*t^6.95)/(g1^2*g2) + t^6.96/g3^2 + (2*g2*g3^15*t^7.05)/g1 + g1*g2^2*g3^4*t^7.06 + (g3^15*t^7.09)/(g1^3*g2^3) + (g3^4*t^7.1)/(g1*g2^2) + (g3^21*t^7.19)/(g1^2*g2) + 2*g3^10*t^7.2 + (g1^2*g2*t^7.22)/g3 + (2*g3^10*t^7.25)/(g1^2*g2^4) + (g2^6*t^7.32)/g3^6 + (g3^27*t^7.34)/(g1^3*g2^3) + (2*g3^16*t^7.35)/(g1*g2^2) + (2*g1*g3^5*t^7.36)/g2 + (g1^3*t^7.37)/g3^6 + (g3^22*t^7.49)/(g1^2*g2^4) + t^7.5/g1^3 + (g2*t^7.52)/(g1*g3^11) + (g1*g2^2*t^7.53)/g3^22 + (g2^2*g3^6*t^7.6)/g1^2 + (2*g2^3*t^7.62)/g3^5 + (g1^2*g2^4*t^7.63)/g3^16 + (g3^12*t^7.75)/g1^3 + (g2*g3*t^7.76)/g1 + (2*g2^2*g3^18*t^7.85)/g1^2 + 2*g2^3*g3^7*t^7.86 + (g1^2*g2^4*t^7.88)/g3^4 + (g3^7*t^7.91)/(g1^2*g2) + (2*t^7.92)/g3^4 + (g3^24*t^7.99)/g1^3 + (2*g2*g3^13*t^8.01)/g1 + g1*g2^2*g3^2*t^8.02 - (3*g3^2*t^8.06)/(g1*g2^2) - (g1*t^8.07)/(g2*g3^9) + (3*g3^19*t^8.15)/(g1^2*g2) + (g2^3*t^8.16)/(g1^3*g3^3) + 4*g3^8*t^8.16 + (g2^4*t^8.17)/(g1*g3^14) + (g1^2*g2*t^8.18)/g3^3 + (g1*g2^5*t^8.19)/g3^25 + (g1^3*g2^6*t^8.2)/g3^36 + (g3^8*t^8.21)/(g1^2*g2^4) + (g3^8*t^8.25)/(g1^4*g2^8) + (2*g3^14*t^8.31)/(g1*g2^2) + (g1*g3^3*t^8.32)/g2 + (g3^14*t^8.35)/(g1^3*g2^6) + (g3^31*t^8.4)/(g1^2*g2) + (g2^3*g3^9*t^8.41)/g1^3 + 2*g3^20*t^8.41 + (g2^4*t^8.42)/(g1*g3^2) + g1^2*g2*g3^9*t^8.42 + (g1*g2^5*t^8.43)/g3^13 + (g1^3*g2^6*t^8.44)/g3^24 + (g3^20*t^8.45)/(g1^2*g2^4) + (g3^26*t^8.55)/(g1*g2^2) + (g2^2*g3^4*t^8.56)/g1^2 + (g1*g3^15*t^8.57)/g2 + (g2^3*t^8.58)/g3^7 + (g1^2*g2^4*t^8.59)/g3^18 + (g2^3*g3^21*t^8.65)/g1^3 + (2*g2^4*g3^10*t^8.67)/g1 + (2*g1*g2^5*t^8.68)/g3 + (g1^3*g2^6*t^8.69)/g3^12 - (4*g2*t^8.72)/(g1*g3) - (5*g1*g2^2*t^8.73)/g3^12 - (g1^3*g2^3*t^8.75)/g3^23 + (2*g2^2*g3^16*t^8.81)/g1^2 + 3*g2^3*g3^5*t^8.82 + (g1^2*g2^4*t^8.83)/g3^6 + (g3^5*t^8.86)/(g1^2*g2) + (2*t^8.88)/g3^6 + (g2^3*g3^33*t^8.9)/g1^3 + (g3^5*t^8.91)/(g1^4*g2^5) + (g2^4*g3^22*t^8.91)/g1 + t^8.92/(g1^2*g2^4*g3^6) + g1*g2^5*g3^11*t^8.92 + g1^3*g2^6*t^8.94 - (2*g2*g3^11*t^8.97)/g1 - 3*g1*g2^2*t^8.98 - (g1^3*g2^3*t^8.99)/g3^11 + t^8.88/(g3^6*y^2) - t^3.96/(g3^2*y) - t^4.92/(g3^4*y) - t^6.02/(g1*g2^2*y) - (g2*t^6.68)/(g1*g3^3*y) - (g1*g2^2*t^6.69)/(g3^14*y) - (g2*g3^9*t^6.93)/(g1*y) - (g1*g2^2*t^6.94)/(g3^2*y) - t^6.98/(g1*g2^2*g3^2*y) - (g3^4*t^7.08)/y - (g2*t^7.64)/(g1*g3^5*y) - (g1*g2^2*t^7.65)/(g3^16*y) + (g3*t^7.78)/(g1^2*g2*y) + t^7.8/(g3^10*y) - (g2*g3^7*t^7.88)/(g1*y) + (g3^13*t^8.03)/(g1^2*g2*y) - (g3^2*t^8.08)/(g1^2*g2^4*y) + (g3^8*t^8.19)/(g1*g2^2*y) + (g2^3*t^8.45)/(g3^13*y) + (g2^2*g3^10*t^8.69)/(g1^2*y) + (2*g2^3*t^8.7)/(g3*y) + (g1^2*g2^4*t^8.71)/(g3^12*y) - t^8.74/(g1^2*g2*g3*y) - t^8.75/(g3^12*y) + (g1*g2^2*t^8.86)/(g3^6*y) + (g2^3*g3^11*t^8.94)/y - (t^3.96*y)/g3^2 - (t^4.92*y)/g3^4 - (t^6.02*y)/(g1*g2^2) - (g2*t^6.68*y)/(g1*g3^3) - (g1*g2^2*t^6.69*y)/g3^14 - (g2*g3^9*t^6.93*y)/g1 - (g1*g2^2*t^6.94*y)/g3^2 - (t^6.98*y)/(g1*g2^2*g3^2) - g3^4*t^7.08*y - (g2*t^7.64*y)/(g1*g3^5) - (g1*g2^2*t^7.65*y)/g3^16 + (g3*t^7.78*y)/(g1^2*g2) + (t^7.8*y)/g3^10 - (g2*g3^7*t^7.88*y)/g1 + (g3^13*t^8.03*y)/(g1^2*g2) - (g3^2*t^8.08*y)/(g1^2*g2^4) + (g3^8*t^8.19*y)/(g1*g2^2) + (g2^3*t^8.45*y)/g3^13 + (g2^2*g3^10*t^8.69*y)/g1^2 + (2*g2^3*t^8.7*y)/g3 + (g1^2*g2^4*t^8.71*y)/g3^12 - (t^8.74*y)/(g1^2*g2*g3) - (t^8.75*y)/g3^12 + (g1*g2^2*t^8.86*y)/g3^6 + g2^3*g3^11*t^8.94*y + (t^8.88*y^2)/g3^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58413 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ 1.4776 1.6858 0.8765 [X:[1.3443], M:[0.9514, 0.688, 1.0164, 0.9469], q:[0.5054, 0.5098], qb:[0.5433, 0.4743], phi:[0.3279]] t^2.06 + t^2.84 + t^2.85 + t^2.94 + t^2.95 + t^3.05 + t^3.92 + t^4.03 + 2*t^4.13 + t^4.14 + t^4.9 + t^4.91 + 2*t^4.92 + t^5. + t^5.02 + 2*t^5.11 + t^5.13 + t^5.46 + t^5.55 + t^5.56 + t^5.67 + t^5.68 + t^5.69 + t^5.71 + t^5.78 + t^5.79 + t^5.81 + t^5.88 + 2*t^5.89 + 2*t^5.9 + t^5.99 - 3*t^6. - t^3.98/y - t^4.97/y - t^3.98*y - t^4.97*y detail