Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61024 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{3}$ 1.4957 1.7261 0.8665 [X:[], M:[0.6871, 1.3252, 0.6871, 0.9878], q:[0.4817, 0.5062], qb:[0.4938, 0.4938], phi:[0.3374]] [X:[], M:[[-5, -11, 1], [2, 2, 2], [-5, 1, -11], [3, 3, 3]], q:[[6, 0, 0], [0, -6, -6]], qb:[[0, 12, 0], [0, 0, 12]], phi:[[-1, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ ${}q_{2}^{2}\tilde{q}_{2}^{2}$ -3 2*t^2.06 + 2*t^2.93 + t^2.96 + 2*t^3. + t^3.98 + 2*t^4.01 + 3*t^4.12 + 2*t^4.95 + 4*t^4.99 + 4*t^5.02 + 4*t^5.06 + t^5.42 + 2*t^5.46 + t^5.49 + 3*t^5.85 + 2*t^5.89 + 4*t^5.93 + 2*t^5.96 - 3*t^6. + 2*t^6.04 + 3*t^6.07 + 4*t^6.18 + t^6.43 + 2*t^6.47 + t^6.51 + 2*t^6.9 + 4*t^6.94 + 4*t^6.98 + 3*t^7.01 + 6*t^7.05 + 6*t^7.09 + 6*t^7.12 + t^7.37 - t^7.44 + t^7.45 + 4*t^7.48 + 4*t^7.52 + 2*t^7.56 + t^7.59 + 4*t^7.88 + 6*t^7.91 + 11*t^7.95 + 10*t^7.99 + 7*t^8.02 - 6*t^8.06 + 2*t^8.1 + 4*t^8.13 + 5*t^8.24 + 2*t^8.35 + 5*t^8.38 + 4*t^8.42 + t^8.46 + 4*t^8.78 + 3*t^8.82 + 6*t^8.85 + 4*t^8.89 - 6*t^8.93 + 4*t^8.96 - t^4.01/y - t^5.02/y - (2*t^6.07)/y - (2*t^6.94)/y - t^6.98/y - (2*t^7.01)/y - (2*t^7.09)/y + t^7.12/y + (3*t^7.99)/y + (4*t^8.06)/y - (3*t^8.13)/y + t^8.85/y + (2*t^8.89)/y + (4*t^8.93)/y + (2*t^8.96)/y - t^4.01*y - t^5.02*y - 2*t^6.07*y - 2*t^6.94*y - t^6.98*y - 2*t^7.01*y - 2*t^7.09*y + t^7.12*y + 3*t^7.99*y + 4*t^8.06*y - 3*t^8.13*y + t^8.85*y + 2*t^8.89*y + 4*t^8.93*y + 2*t^8.96*y (g2*t^2.06)/(g1^5*g3^11) + (g3*t^2.06)/(g1^5*g2^11) + g1^6*g2^12*t^2.93 + g1^6*g3^12*t^2.93 + g1^3*g2^3*g3^3*t^2.96 + (g2^6*t^3.)/g3^6 + (g3^6*t^3.)/g2^6 + g1^2*g2^2*g3^2*t^3.98 + (g2^5*t^4.01)/(g1*g3^7) + (g3^5*t^4.01)/(g1*g2^7) + (g2^2*t^4.12)/(g1^10*g3^22) + t^4.12/(g1^10*g2^10*g3^10) + (g3^2*t^4.12)/(g1^10*g2^22) + (g1^4*g2^10*t^4.95)/g3^2 + (g1^4*g3^10*t^4.95)/g2^2 + (g1*g2^13*t^4.99)/g3^11 + 2*g1*g2*g3*t^4.99 + (g1*g3^13*t^4.99)/g2^11 + (2*g2^4*t^5.02)/(g1^2*g3^8) + (2*g3^4*t^5.02)/(g1^2*g2^8) + (g2^7*t^5.06)/(g1^5*g3^17) + (2*t^5.06)/(g1^5*g2^5*g3^5) + (g3^7*t^5.06)/(g1^5*g2^17) + (g1^11*t^5.42)/(g2^7*g3^7) + (g2^23*g3^11*t^5.46)/g1 + (g2^11*g3^23*t^5.46)/g1 + (g1^5*t^5.49)/(g2^13*g3^13) + g1^12*g2^24*t^5.85 + g1^12*g2^12*g3^12*t^5.85 + g1^12*g3^24*t^5.85 + g1^9*g2^15*g3^3*t^5.89 + g1^9*g2^3*g3^15*t^5.89 + (g1^6*g2^18*t^5.93)/g3^6 + 2*g1^6*g2^6*g3^6*t^5.93 + (g1^6*g3^18*t^5.93)/g2^6 + (g1^3*g2^9*t^5.96)/g3^3 + (g1^3*g3^9*t^5.96)/g2^3 - 3*t^6. + (g2^3*t^6.04)/(g1^3*g3^9) + (g3^3*t^6.04)/(g1^3*g2^9) + (g2^6*t^6.07)/(g1^6*g3^18) + t^6.07/(g1^6*g2^6*g3^6) + (g3^6*t^6.07)/(g1^6*g2^18) + (g2^3*t^6.18)/(g1^15*g3^33) + t^6.18/(g1^15*g2^9*g3^21) + t^6.18/(g1^15*g2^21*g3^9) + (g3^3*t^6.18)/(g1^15*g2^33) + (g1^10*t^6.43)/(g2^8*g3^8) + (g2^22*g3^10*t^6.47)/g1^2 + (g2^10*g3^22*t^6.47)/g1^2 + (g1^4*t^6.51)/(g2^14*g3^14) + g1^8*g2^14*g3^2*t^6.9 + g1^8*g2^2*g3^14*t^6.9 + (g1^5*g2^17*t^6.94)/g3^7 + 2*g1^5*g2^5*g3^5*t^6.94 + (g1^5*g3^17*t^6.94)/g2^7 + (2*g1^2*g2^8*t^6.98)/g3^4 + (2*g1^2*g3^8*t^6.98)/g2^4 + (g2^11*t^7.01)/(g1*g3^13) + t^7.01/(g1*g2*g3) + (g3^11*t^7.01)/(g1*g2^13) + (g2^14*t^7.05)/(g1^4*g3^22) + (2*g2^2*t^7.05)/(g1^4*g3^10) + (2*g3^2*t^7.05)/(g1^4*g2^10) + (g3^14*t^7.05)/(g1^4*g2^22) + (2*g2^5*t^7.09)/(g1^7*g3^19) + (2*t^7.09)/(g1^7*g2^7*g3^7) + (2*g3^5*t^7.09)/(g1^7*g2^19) + (g2^8*t^7.12)/(g1^10*g3^28) + (2*t^7.12)/(g1^10*g2^4*g3^16) + (2*t^7.12)/(g1^10*g2^16*g3^4) + (g3^8*t^7.12)/(g1^10*g2^28) + (g1^15*t^7.37)/(g2^3*g3^3) - g2^18*g3^18*t^7.44 + (g1^9*t^7.45)/(g2^9*g3^9) + (g2^33*t^7.48)/(g1^3*g3^3) + (g2^21*g3^9*t^7.48)/g1^3 + (g2^9*g3^21*t^7.48)/g1^3 + (g3^33*t^7.48)/(g1^3*g2^3) + (g2^24*t^7.52)/g1^6 + (g1^3*t^7.52)/(g2^15*g3^15) + (g2^12*g3^12*t^7.52)/g1^6 + (g3^24*t^7.52)/g1^6 + t^7.56/(g2^12*g3^24) + t^7.56/(g2^24*g3^12) + t^7.59/(g1^3*g2^21*g3^21) + (g1^10*g2^22*t^7.88)/g3^2 + 2*g1^10*g2^10*g3^10*t^7.88 + (g1^10*g3^22*t^7.88)/g2^2 + (g1^7*g2^25*t^7.91)/g3^11 + 2*g1^7*g2^13*g3*t^7.91 + 2*g1^7*g2*g3^13*t^7.91 + (g1^7*g3^25*t^7.91)/g2^11 + (3*g1^4*g2^16*t^7.95)/g3^8 + 5*g1^4*g2^4*g3^4*t^7.95 + (3*g1^4*g3^16*t^7.95)/g2^8 + (g1*g2^19*t^7.99)/g3^17 + (4*g1*g2^7*t^7.99)/g3^5 + (4*g1*g3^7*t^7.99)/g2^5 + (g1*g3^19*t^7.99)/g2^17 + (2*g2^10*t^8.02)/(g1^2*g3^14) + (3*t^8.02)/(g1^2*g2^2*g3^2) + (2*g3^10*t^8.02)/(g1^2*g2^14) - (3*g2*t^8.06)/(g1^5*g3^11) - (3*g3*t^8.06)/(g1^5*g2^11) + (g2^4*t^8.1)/(g1^8*g3^20) + (g3^4*t^8.1)/(g1^8*g2^20) + (g2^7*t^8.13)/(g1^11*g3^29) + t^8.13/(g1^11*g2^5*g3^17) + t^8.13/(g1^11*g2^17*g3^5) + (g3^7*t^8.13)/(g1^11*g2^29) + (g2^4*t^8.24)/(g1^20*g3^44) + t^8.24/(g1^20*g2^8*g3^32) + t^8.24/(g1^20*g2^20*g3^20) + t^8.24/(g1^20*g2^32*g3^8) + (g3^4*t^8.24)/(g1^20*g2^44) + (g1^17*g2^5*t^8.35)/g3^7 + (g1^17*g3^5*t^8.35)/g2^7 + (g1^14*t^8.38)/(g2^4*g3^4) + g1^5*g2^35*g3^11*t^8.38 + 2*g1^5*g2^23*g3^23*t^8.38 + g1^5*g2^11*g3^35*t^8.38 + (g1^11*t^8.42)/(g2*g3^13) + (g1^11*t^8.42)/(g2^13*g3) + g1^2*g2^26*g3^14*t^8.42 + g1^2*g2^14*g3^26*t^8.42 + (g1^8*t^8.46)/(g2^10*g3^10) + g1^18*g2^36*t^8.78 + g1^18*g2^24*g3^12*t^8.78 + g1^18*g2^12*g3^24*t^8.78 + g1^18*g3^36*t^8.78 + g1^15*g2^27*g3^3*t^8.82 + g1^15*g2^15*g3^15*t^8.82 + g1^15*g2^3*g3^27*t^8.82 + (g1^12*g2^30*t^8.85)/g3^6 + 2*g1^12*g2^18*g3^6*t^8.85 + 2*g1^12*g2^6*g3^18*t^8.85 + (g1^12*g3^30*t^8.85)/g2^6 + (g1^9*g2^21*t^8.89)/g3^3 + 2*g1^9*g2^9*g3^9*t^8.89 + (g1^9*g3^21*t^8.89)/g2^3 - 3*g1^6*g2^12*t^8.93 - 3*g1^6*g3^12*t^8.93 + (2*g1^3*g2^15*t^8.96)/g3^9 + (2*g1^3*g3^15*t^8.96)/g2^9 - t^4.01/(g1*g2*g3*y) - t^5.02/(g1^2*g2^2*g3^2*y) - t^6.07/(g1^6*g2^12*y) - t^6.07/(g1^6*g3^12*y) - (g1^5*g2^11*t^6.94)/(g3*y) - (g1^5*g3^11*t^6.94)/(g2*y) - (g1^2*g2^2*g3^2*t^6.98)/y - (g2^5*t^7.01)/(g1*g3^7*y) - (g3^5*t^7.01)/(g1*g2^7*y) - t^7.09/(g1^7*g2*g3^13*y) - t^7.09/(g1^7*g2^13*g3*y) + t^7.12/(g1^10*g2^10*g3^10*y) + (g1*g2^13*t^7.99)/(g3^11*y) + (g1*g2*g3*t^7.99)/y + (g1*g3^13*t^7.99)/(g2^11*y) + (g2^7*t^8.06)/(g1^5*g3^17*y) + (2*t^8.06)/(g1^5*g2^5*g3^5*y) + (g3^7*t^8.06)/(g1^5*g2^17*y) - (g2*t^8.13)/(g1^11*g3^23*y) - t^8.13/(g1^11*g2^11*g3^11*y) - (g3*t^8.13)/(g1^11*g2^23*y) + (g1^12*g2^12*g3^12*t^8.85)/y + (g1^9*g2^15*g3^3*t^8.89)/y + (g1^9*g2^3*g3^15*t^8.89)/y + (g1^6*g2^18*t^8.93)/(g3^6*y) + (2*g1^6*g2^6*g3^6*t^8.93)/y + (g1^6*g3^18*t^8.93)/(g2^6*y) + (g1^3*g2^9*t^8.96)/(g3^3*y) + (g1^3*g3^9*t^8.96)/(g2^3*y) - (t^4.01*y)/(g1*g2*g3) - (t^5.02*y)/(g1^2*g2^2*g3^2) - (t^6.07*y)/(g1^6*g2^12) - (t^6.07*y)/(g1^6*g3^12) - (g1^5*g2^11*t^6.94*y)/g3 - (g1^5*g3^11*t^6.94*y)/g2 - g1^2*g2^2*g3^2*t^6.98*y - (g2^5*t^7.01*y)/(g1*g3^7) - (g3^5*t^7.01*y)/(g1*g2^7) - (t^7.09*y)/(g1^7*g2*g3^13) - (t^7.09*y)/(g1^7*g2^13*g3) + (t^7.12*y)/(g1^10*g2^10*g3^10) + (g1*g2^13*t^7.99*y)/g3^11 + g1*g2*g3*t^7.99*y + (g1*g3^13*t^7.99*y)/g2^11 + (g2^7*t^8.06*y)/(g1^5*g3^17) + (2*t^8.06*y)/(g1^5*g2^5*g3^5) + (g3^7*t^8.06*y)/(g1^5*g2^17) - (g2*t^8.13*y)/(g1^11*g3^23) - (t^8.13*y)/(g1^11*g2^11*g3^11) - (g3*t^8.13*y)/(g1^11*g2^23) + g1^12*g2^12*g3^12*t^8.85*y + g1^9*g2^15*g3^3*t^8.89*y + g1^9*g2^3*g3^15*t^8.89*y + (g1^6*g2^18*t^8.93*y)/g3^6 + 2*g1^6*g2^6*g3^6*t^8.93*y + (g1^6*g3^18*t^8.93*y)/g2^6 + (g1^3*g2^9*t^8.96*y)/g3^3 + (g1^3*g3^9*t^8.96*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57900 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4949 1.7242 0.867 [X:[], M:[0.6735, 1.3306, 0.6735], q:[0.4939, 0.5021], qb:[0.4979, 0.4979], phi:[0.3347]] 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + t^3.99 + 2*t^4. + 3*t^4.04 + 2*t^4.98 + 4*t^5. + 2*t^5.01 + 4*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail