Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58619 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 0.9876 1.1932 0.8277 [X:[1.5348, 1.5, 1.5, 1.4652], M:[0.7445, 0.9652], q:[0.2402, 0.275], qb:[0.225, 0.2598], phi:[0.5]] [X:[[0, -1], [0, 0], [0, 0], [0, 1]], M:[[3, 1], [0, 1]], q:[[-1, 0], [-1, -1]], qb:[[1, 1], [1, 0]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ -1 t^2.23 + 2*t^2.9 + 3*t^3. + t^3.63 + t^3.73 + t^3.87 + 2*t^4.4 + t^4.47 + 5*t^4.5 + 2*t^4.6 + 3*t^5.13 + 4*t^5.23 + t^5.27 + t^5.37 + 3*t^5.79 + t^5.86 + 3*t^5.9 + t^5.97 - t^6. - 2*t^6.1 + 3*t^6.52 + 5*t^6.63 + t^6.66 + t^6.7 + 6*t^6.73 + 3*t^6.84 + t^6.87 + t^6.98 + t^7.26 + 4*t^7.29 + 4*t^7.36 + 12*t^7.4 + 5*t^7.47 + 13*t^7.5 + 4*t^7.6 + t^7.74 + 4*t^8.02 + t^8.1 + 7*t^8.13 - t^8.16 + t^8.2 + t^8.23 - t^8.27 - 3*t^8.34 - t^8.48 + 4*t^8.69 + 4*t^8.76 + 6*t^8.79 + 7*t^8.86 - 4*t^8.9 + t^8.93 + 7*t^8.97 - t^4.5/y - t^6./y - t^6.73/y - t^7.4/y + t^7.5/y + t^7.6/y + (2*t^8.13)/y + (2*t^8.23)/y + t^8.27/y + t^8.79/y + t^8.86/y + (3*t^8.9)/y - t^4.5*y - t^6.*y - t^6.73*y - t^7.4*y + t^7.5*y + t^7.6*y + 2*t^8.13*y + 2*t^8.23*y + t^8.27*y + t^8.79*y + t^8.86*y + 3*t^8.9*y g1^3*g2*t^2.23 + 2*g2*t^2.9 + 3*t^3. + g1^3*g2^2*t^3.63 + g1^3*g2*t^3.73 + t^3.87/(g1^3*g2^2) + 2*g2*t^4.4 + g1^6*g2^2*t^4.47 + 5*t^4.5 + (2*t^4.6)/g2 + 3*g1^3*g2^2*t^5.13 + 4*g1^3*g2*t^5.23 + t^5.27/(g1^3*g2) + t^5.37/(g1^3*g2^2) + 3*g2^2*t^5.79 + g1^6*g2^3*t^5.86 + 3*g2*t^5.9 + g1^6*g2^2*t^5.97 - t^6. - (2*t^6.1)/g2 + 3*g1^3*g2^3*t^6.52 + 5*g1^3*g2^2*t^6.63 + t^6.66/g1^3 + g1^9*g2^3*t^6.7 + 6*g1^3*g2*t^6.73 + 3*g1^3*t^6.84 + t^6.87/(g1^3*g2^2) + t^6.98/(g1^3*g2^3) + g1^6*g2^4*t^7.26 + 4*g2^2*t^7.29 + 4*g1^6*g2^3*t^7.36 + 12*g2*t^7.4 + 5*g1^6*g2^2*t^7.47 + 13*t^7.5 + (4*t^7.6)/g2 + t^7.74/(g1^6*g2^4) + 4*g1^3*g2^3*t^8.02 + g1^9*g2^4*t^8.1 + 7*g1^3*g2^2*t^8.13 - t^8.16/g1^3 + g1^9*g2^3*t^8.2 + g1^3*g2*t^8.23 - t^8.27/(g1^3*g2) - 3*g1^3*t^8.34 - t^8.48/(g1^3*g2^3) + 4*g2^3*t^8.69 + 4*g1^6*g2^4*t^8.76 + 6*g2^2*t^8.79 + 7*g1^6*g2^3*t^8.86 - 4*g2*t^8.9 + g1^12*g2^4*t^8.93 + 7*g1^6*g2^2*t^8.97 - t^4.5/y - t^6./y - (g1^3*g2*t^6.73)/y - (g2*t^7.4)/y + t^7.5/y + t^7.6/(g2*y) + (2*g1^3*g2^2*t^8.13)/y + (2*g1^3*g2*t^8.23)/y + t^8.27/(g1^3*g2*y) + (g2^2*t^8.79)/y + (g1^6*g2^3*t^8.86)/y + (3*g2*t^8.9)/y - t^4.5*y - t^6.*y - g1^3*g2*t^6.73*y - g2*t^7.4*y + t^7.5*y + (t^7.6*y)/g2 + 2*g1^3*g2^2*t^8.13*y + 2*g1^3*g2*t^8.23*y + (t^8.27*y)/(g1^3*g2) + g2^2*t^8.79*y + g1^6*g2^3*t^8.86*y + 3*g2*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57730 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$ 0.9863 1.1908 0.8283 [X:[1.4926, 1.5, 1.5, 1.5074], M:[0.7278], q:[0.2599, 0.2525], qb:[0.2475, 0.2401], phi:[0.5]] t^2.18 + t^2.98 + 3*t^3. + t^3.02 + t^3.68 + t^3.71 + t^3.79 + t^4.37 + 2*t^4.48 + 5*t^4.5 + 2*t^4.52 + t^5.16 + 4*t^5.18 + 2*t^5.21 + t^5.29 + t^5.32 + t^5.87 + t^5.89 + t^5.96 + t^5.98 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail