Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59461 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.3617 1.5883 0.8573 [X:[1.3733], M:[1.0, 0.733], q:[0.3081, 0.5751], qb:[0.3186, 0.5584], phi:[0.3733]] [X:[[0, 1]], M:[[0, 0], [0, 10]], q:[[-1, 5], [-1, -5]], qb:[[1, -6], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -2 t^2.2 + t^2.24 + t^2.6 + t^2.68 + t^3. + t^3.36 + t^3.4 + t^3.72 + 2*t^4.12 + t^4.4 + t^4.44 + t^4.48 + t^4.52 + t^4.69 + t^4.71 + t^4.8 + 2*t^4.84 + t^4.88 + 2*t^4.92 + t^5.2 + t^5.24 + t^5.36 + t^5.43 + t^5.49 + t^5.56 + 3*t^5.6 + 2*t^5.64 + t^5.68 + t^5.81 + t^5.83 + t^5.92 + 2*t^5.96 - 2*t^6. + t^6.04 + t^6.08 + t^6.13 + t^6.23 + 2*t^6.32 + 3*t^6.36 + t^6.4 + t^6.55 + t^6.6 + t^6.61 + t^6.64 + t^6.68 + 5*t^6.72 + t^6.76 + 2*t^6.8 + t^6.89 + 2*t^6.93 + 2*t^6.95 - t^6.97 + t^7. + 2*t^7.04 + 4*t^7.08 + 3*t^7.12 + 2*t^7.16 + t^7.2 + t^7.37 + t^7.39 + t^7.4 + 2*t^7.44 + 2*t^7.48 + 3*t^7.52 + 2*t^7.6 + t^7.63 + 2*t^7.67 + t^7.69 + 2*t^7.73 + t^7.76 + 3*t^7.8 + 6*t^7.84 + 2*t^7.88 + 2*t^7.92 + t^8.04 + 2*t^8.05 + 2*t^8.07 + t^8.11 + t^8.12 + 2*t^8.16 + t^8.18 + t^8.2 + 3*t^8.24 + 2*t^8.28 + 3*t^8.32 + t^8.33 + t^8.36 + t^8.37 + t^8.39 + t^8.41 + 2*t^8.43 - t^8.45 + t^8.49 + t^8.51 + 2*t^8.52 + t^8.54 + 4*t^8.56 + t^8.6 + 4*t^8.64 - 4*t^8.68 + t^8.72 + t^8.73 + t^8.76 - t^8.77 + 2*t^8.79 + t^8.8 + 2*t^8.81 + 2*t^8.83 + t^8.84 + 2*t^8.85 - t^8.87 + t^8.88 + t^8.91 + 4*t^8.92 + 7*t^8.96 - t^4.12/y - t^5.24/y - t^6.32/y - t^6.36/y - t^6.72/y - t^6.8/y - (2*t^7.48)/y - t^7.52/y + t^7.8/y + (2*t^7.88)/y + t^7.92/y + t^8.2/y - t^8.24/y + t^8.28/y - t^8.52/y + t^8.6/y + t^8.68/y - t^4.12*y - t^5.24*y - t^6.32*y - t^6.36*y - t^6.72*y - t^6.8*y - 2*t^7.48*y - t^7.52*y + t^7.8*y + 2*t^7.88*y + t^7.92*y + t^8.2*y - t^8.24*y + t^8.28*y - t^8.52*y + t^8.6*y + t^8.68*y g2^10*t^2.2 + g2^2*t^2.24 + g2^5*t^2.6 + t^2.68/g2^11 + t^3. + g2^3*t^3.36 + t^3.4/g2^5 + g2^6*t^3.72 + 2*g2*t^4.12 + g2^20*t^4.4 + g2^12*t^4.44 + g2^4*t^4.48 + t^4.52/g2^4 + (g2^6*t^4.69)/g1^3 + (g1^3*t^4.71)/g2^11 + g2^15*t^4.8 + 2*g2^7*t^4.84 + t^4.88/g2 + (2*t^4.92)/g2^9 + g2^10*t^5.2 + g2^2*t^5.24 + t^5.36/g2^22 + (g1^3*t^5.43)/g2^5 + t^5.49/(g1^3*g2^4) + g2^13*t^5.56 + 3*g2^5*t^5.6 + (2*t^5.64)/g2^3 + t^5.68/g2^11 + (g2^7*t^5.81)/g1^3 + (g1^3*t^5.83)/g2^10 + g2^16*t^5.92 + 2*g2^8*t^5.96 - 2*t^6. + t^6.04/g2^8 + t^6.08/g2^16 + (g2^18*t^6.13)/g1^3 + (g1^3*t^6.23)/g2^15 + 2*g2^11*t^6.32 + 3*g2^3*t^6.36 + t^6.4/g2^5 + (g1^3*t^6.55)/g2^4 + g2^30*t^6.6 + t^6.61/(g1^3*g2^3) + g2^22*t^6.64 + g2^14*t^6.68 + 5*g2^6*t^6.72 + t^6.76/g2^2 + (2*t^6.8)/g2^10 + (g2^16*t^6.89)/g1^3 + (2*g2^8*t^6.93)/g1^3 + (2*g1^3*t^6.95)/g2^9 - t^6.97/g1^3 + g2^25*t^7. + 2*g2^17*t^7.04 + 4*g2^9*t^7.08 + 3*g2*t^7.12 + (2*t^7.16)/g2^7 + t^7.2/g2^15 + t^7.37/(g1^3*g2^5) + (g1^3*t^7.39)/g2^22 + g2^20*t^7.4 + 2*g2^12*t^7.44 + 2*g2^4*t^7.48 + (3*t^7.52)/g2^4 + (2*t^7.6)/g2^20 + g1^3*g2^5*t^7.63 + (2*g1^3*t^7.67)/g2^3 + (g2^6*t^7.69)/g1^3 + (2*t^7.73)/(g1^3*g2^2) + g2^23*t^7.76 + 3*g2^15*t^7.8 + 6*g2^7*t^7.84 + (2*t^7.88)/g2 + (2*t^7.92)/g2^9 + t^8.04/g2^33 + (2*g2^9*t^8.05)/g1^3 + (2*g1^3*t^8.07)/g2^8 + (g1^3*t^8.11)/g2^16 + g2^26*t^8.12 + 2*g2^18*t^8.16 + t^8.18/(g1^3*g2^15) + g2^10*t^8.2 + 3*g2^2*t^8.24 + (2*t^8.28)/g2^6 + (3*t^8.32)/g2^14 + (g2^28*t^8.33)/g1^3 + t^8.36/g2^22 + (g2^20*t^8.37)/g1^3 + g1^3*g2^3*t^8.39 + (g2^12*t^8.41)/g1^3 + (2*g1^3*t^8.43)/g2^5 - (g2^4*t^8.45)/g1^3 + t^8.49/(g1^3*g2^4) + (g1^3*t^8.51)/g2^21 + 2*g2^21*t^8.52 + t^8.54/(g1^3*g2^12) + 4*g2^13*t^8.56 + g2^5*t^8.6 + (4*t^8.64)/g2^3 - (4*t^8.68)/g2^11 + t^8.72/g2^19 + (g2^23*t^8.73)/g1^3 + t^8.76/g2^27 - (g2^15*t^8.77)/g1^3 + (2*g1^3*t^8.79)/g2^2 + g2^40*t^8.8 + (2*g2^7*t^8.81)/g1^3 + (2*g1^3*t^8.83)/g2^10 + g2^32*t^8.84 + (2*t^8.85)/(g1^3*g2) - (g1^3*t^8.87)/g2^18 + g2^24*t^8.88 + (g1^3*t^8.91)/g2^26 + 4*g2^16*t^8.92 + 7*g2^8*t^8.96 - (g2*t^4.12)/y - (g2^2*t^5.24)/y - (g2^11*t^6.32)/y - (g2^3*t^6.36)/y - (g2^6*t^6.72)/y - t^6.8/(g2^10*y) - (2*g2^4*t^7.48)/y - t^7.52/(g2^4*y) + (g2^15*t^7.8)/y + (2*t^7.88)/(g2*y) + t^7.92/(g2^9*y) + (g2^10*t^8.2)/y - (g2^2*t^8.24)/y + t^8.28/(g2^6*y) - (g2^21*t^8.52)/y + (g2^5*t^8.6)/y + t^8.68/(g2^11*y) - g2*t^4.12*y - g2^2*t^5.24*y - g2^11*t^6.32*y - g2^3*t^6.36*y - g2^6*t^6.72*y - (t^6.8*y)/g2^10 - 2*g2^4*t^7.48*y - (t^7.52*y)/g2^4 + g2^15*t^7.8*y + (2*t^7.88*y)/g2 + (t^7.92*y)/g2^9 + g2^10*t^8.2*y - g2^2*t^8.24*y + (t^8.28*y)/g2^6 - g2^21*t^8.52*y + g2^5*t^8.6*y + (t^8.68*y)/g2^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57647 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.5157 1.7657 0.8584 [X:[], M:[0.6733, 0.6733], q:[0.498, 0.498], qb:[0.494, 0.502], phi:[0.3347]] t^2.01 + 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + 2*t^4. + t^4.02 + 2*t^4.03 + 3*t^4.04 + 4*t^4.98 + 4*t^5. + 4*t^5.01 + 5*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail