Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58564 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4965 | 1.7241 | 0.868 | [X:[1.3397], M:[0.959, 0.6699, 0.6917], q:[0.4844, 0.5254], qb:[0.5156, 0.4937], phi:[0.3301]] | [X:[[0, 0, 2]], M:[[-1, 1, -6], [0, 0, 1], [1, -1, 1]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.01 + t^2.08 + t^2.88 + t^2.93 + t^2.97 + t^3. + t^3.06 + 2*t^4.02 + t^4.05 + t^4.08 + t^4.11 + t^4.15 + t^4.89 + t^4.92 + t^4.94 + t^4.95 + 2*t^4.98 + 2*t^5.01 + t^5.04 + t^5.05 + t^5.07 + t^5.08 + t^5.1 + t^5.13 + t^5.47 + t^5.5 + t^5.56 + t^5.6 + t^5.75 + t^5.81 + t^5.85 + t^5.87 + t^5.91 + t^5.93 + t^5.94 + t^5.97 + t^5.99 - 3*t^6. + 3*t^6.03 + 2*t^6.06 - t^6.07 + 2*t^6.09 + t^6.11 + t^6.12 + t^6.16 + t^6.19 + t^6.23 + t^6.46 + t^6.49 + t^6.56 + t^6.59 - t^6.87 + 2*t^6.9 + t^6.92 + 2*t^6.95 + t^6.96 + t^6.98 + 2*t^6.99 + 4*t^7.02 + t^7.03 + 3*t^7.05 + t^7.06 + 5*t^7.08 + 3*t^7.11 + t^7.12 + t^7.14 + t^7.15 + t^7.17 + t^7.18 + t^7.21 + t^7.33 + t^7.41 + t^7.48 + t^7.51 + t^7.55 + t^7.57 + t^7.58 + 2*t^7.61 + t^7.64 + t^7.67 + t^7.7 + t^7.76 + t^7.79 + t^7.82 + t^7.83 + t^7.85 + t^7.86 + t^7.88 + 2*t^7.89 + 4*t^7.92 + t^7.94 + 2*t^7.95 + 2*t^7.97 + 2*t^7.98 + t^8. - 2*t^8.01 + t^8.02 + 6*t^8.04 + 3*t^8.07 - 3*t^8.08 + 5*t^8.1 + t^8.12 + 2*t^8.13 - t^8.14 + 2*t^8.16 + 2*t^8.17 + t^8.19 + t^8.2 + 2*t^8.23 + t^8.26 + t^8.3 + t^8.41 - t^8.42 + t^8.43 + 2*t^8.47 + 2*t^8.5 - t^8.51 + 2*t^8.53 + 2*t^8.56 + t^8.57 + t^8.6 + t^8.62 + t^8.63 + t^8.65 + t^8.69 + t^8.73 + t^8.75 + t^8.78 + t^8.8 + t^8.82 + t^8.84 + t^8.87 - 3*t^8.88 + 4*t^8.91 - 2*t^8.93 + 4*t^8.96 + 2*t^8.99 + t^8.97/y^2 - t^3.99/y - t^4.98/y - t^6./y - t^6.07/y - t^6.87/y - t^6.92/y - t^6.96/y - (2*t^6.99)/y - t^7.05/y - t^7.06/y + t^7.08/y - t^7.86/y + t^7.89/y + t^7.94/y + t^7.98/y + t^8.01/y - t^8.04/y + t^8.05/y + t^8.07/y + t^8.13/y - t^8.14/y + t^8.81/y + t^8.85/y + t^8.91/y + t^8.93/y - t^8.94/y + t^8.99/y - t^3.99*y - t^4.98*y - t^6.*y - t^6.07*y - t^6.87*y - t^6.92*y - t^6.96*y - 2*t^6.99*y - t^7.05*y - t^7.06*y + t^7.08*y - t^7.86*y + t^7.89*y + t^7.94*y + t^7.98*y + t^8.01*y - t^8.04*y + t^8.05*y + t^8.07*y + t^8.13*y - t^8.14*y + t^8.81*y + t^8.85*y + t^8.91*y + t^8.93*y - t^8.94*y + t^8.99*y + t^8.97*y^2 | g3*t^2.01 + (g1*g3*t^2.08)/g2 + (g2*t^2.88)/(g1*g3^6) + (g2*t^2.93)/g1 + t^2.97/g3^3 + t^3. + g3^6*t^3.06 + 2*g3^2*t^4.02 + g3^5*t^4.05 + (g1*g3^2*t^4.08)/g2 + (g1*g3^5*t^4.11)/g2 + (g1^2*g3^2*t^4.15)/g2^2 + (g2*t^4.89)/(g1*g3^5) + (g2*t^4.92)/(g1*g3^2) + (g2*g3*t^4.94)/g1 + t^4.95/g3^5 + (2*t^4.98)/g3^2 + 2*g3*t^5.01 + g3^4*t^5.04 + (g1*t^5.05)/(g2*g3^2) + g3^7*t^5.07 + (g1*g3*t^5.08)/g2 + (g1*g3^4*t^5.1)/g2 + (g1*g3^7*t^5.13)/g2 + (g3^5*t^5.47)/(g1^2*g2) + (g1*g2^2*t^5.5)/g3 + (g1^2*g2*t^5.56)/g3 + (g3^11*t^5.6)/(g1*g2^2) + (g2^2*t^5.75)/(g1^2*g3^12) + (g2^2*t^5.81)/(g1^2*g3^6) + (g2*t^5.85)/(g1*g3^9) + (g2^2*t^5.87)/g1^2 + (g2*t^5.91)/(g1*g3^3) + (g2*t^5.93)/g1 + t^5.94/g3^6 + t^5.97/g3^3 + (g2*g3^6*t^5.99)/g1 - 3*t^6. + 3*g3^3*t^6.03 + 2*g3^6*t^6.06 - (g1*t^6.07)/g2 + (2*g1*g3^3*t^6.09)/g2 + g3^12*t^6.11 + (g1*g3^6*t^6.12)/g2 + (g1^2*g3^3*t^6.16)/g2^2 + (g1^2*g3^6*t^6.19)/g2^2 + (g1^3*g3^3*t^6.23)/g2^3 + (g3^4*t^6.46)/(g1^2*g2) + (g1*g2^2*t^6.49)/g3^2 + (g1^2*g2*t^6.56)/g3^2 + (g3^10*t^6.59)/(g1*g2^2) - (g2*t^6.87)/(g1*g3^7) + (2*g2*t^6.9)/(g1*g3^4) + (g2*t^6.92)/(g1*g3) + (2*g2*g3^2*t^6.95)/g1 + t^6.96/g3^4 + (g2*g3^5*t^6.98)/g1 + (2*t^6.99)/g3 + 4*g3^2*t^7.02 + (g1*t^7.03)/(g2*g3^4) + 3*g3^5*t^7.05 + (g1*t^7.06)/(g2*g3) + (3*g1*g3^2*t^7.08)/g2 + 2*g3^8*t^7.08 + (2*g1*g3^5*t^7.11)/g2 + g3^11*t^7.11 + (g1^2*t^7.12)/(g2^2*g3) + (g1*g3^8*t^7.14)/g2 + (g1^2*g3^2*t^7.15)/g2^2 + (g1*g3^11*t^7.17)/g2 + (g1^2*g3^5*t^7.18)/g2^2 + (g1^2*g3^8*t^7.21)/g2^2 + t^7.33/(g1^3*g3^3) + (g2^3*t^7.41)/g3^3 - (g1*g2^2*t^7.45)/g3^6 + (g3^3*t^7.45)/(g1^2*g2) + (g1*g2^2*t^7.48)/g3^3 + g1*g2^2*t^7.51 + (g1^2*g2*t^7.55)/g3^3 + g1^2*g2*t^7.57 + (g3^9*t^7.58)/(g1*g2^2) + (g1^3*t^7.61)/g3^3 + (g3^12*t^7.61)/(g1*g2^2) + g1^3*t^7.64 + (g3^12*t^7.67)/g2^3 + (g3^15*t^7.7)/g2^3 + (g2^2*t^7.76)/(g1^2*g3^11) + (g2^2*t^7.79)/(g1^2*g3^8) + (g2^2*t^7.82)/(g1^2*g3^5) + (g2*t^7.83)/(g1*g3^11) + (g2^2*t^7.85)/(g1^2*g3^2) + (g2*t^7.86)/(g1*g3^8) + (g2^2*g3*t^7.88)/g1^2 + (2*g2*t^7.89)/(g1*g3^5) + t^7.92/g3^8 + (3*g2*t^7.92)/(g1*g3^2) + (g2*g3*t^7.94)/g1 + (2*t^7.95)/g3^5 + (2*g2*g3^4*t^7.97)/g1 + (2*t^7.98)/g3^2 + (g2*g3^7*t^8.)/g1 - 2*g3*t^8.01 + (g1*t^8.02)/(g2*g3^5) + 6*g3^4*t^8.04 + 3*g3^7*t^8.07 - (3*g1*g3*t^8.08)/g2 + (3*g1*g3^4*t^8.1)/g2 + 2*g3^10*t^8.1 + g3^13*t^8.12 + (2*g1*g3^7*t^8.13)/g2 - (g1^2*g3*t^8.14)/g2^2 + (2*g1*g3^10*t^8.16)/g2 + (2*g1^2*g3^4*t^8.17)/g2^2 + (g1*g3^13*t^8.19)/g2 + (g1^2*g3^7*t^8.2)/g2^2 + (g1^3*g3^4*t^8.23)/g2^3 + (g1^2*g3^10*t^8.23)/g2^2 + (g1^3*g3^7*t^8.26)/g2^3 + (g1^4*g3^4*t^8.3)/g2^4 + (g3^5*t^8.41)/g1^3 - t^8.42/(g1^2*g2*g3) + (g2^3*t^8.43)/g3 - (g1*g2^2*t^8.44)/g3^7 + (g3^2*t^8.44)/(g1^2*g2) + (g1*g2^2*t^8.47)/g3^4 + (g3^5*t^8.47)/(g1^2*g2) + (2*g1*g2^2*t^8.5)/g3 - (g1^2*g2*t^8.51)/g3^7 + (2*g3^11*t^8.53)/(g1^2*g2) + (g1^2*g2*t^8.54)/g3^4 - (g3^5*t^8.54)/(g1*g2^2) + (g1^2*g2*t^8.56)/g3 + g1*g2^2*g3^5*t^8.56 + (g3^8*t^8.57)/(g1*g2^2) + (g3^11*t^8.6)/(g1*g2^2) + g1^2*g2*g3^5*t^8.62 + (g2^3*t^8.63)/(g1^3*g3^18) + (g3^17*t^8.65)/(g1*g2^2) + (g2^3*t^8.69)/(g1^3*g3^12) + (g2^2*t^8.73)/(g1^2*g3^15) + (g2^3*t^8.75)/(g1^3*g3^6) + (g2^2*t^8.78)/(g1^2*g3^9) + (g2^3*t^8.8)/g1^3 + (g2*t^8.82)/(g1*g3^12) + (g2^2*t^8.84)/(g1^2*g3^3) + (g2^2*t^8.87)/g1^2 - (3*g2*t^8.88)/(g1*g3^6) + t^8.91/g3^9 + (3*g2*t^8.91)/(g1*g3^3) - (3*g2*t^8.93)/g1 + (g2^2*g3^6*t^8.93)/g1^2 + (4*g2*g3^3*t^8.96)/g1 + (2*g2*g3^6*t^8.99)/g1 + t^8.97/(g3^3*y^2) - t^3.99/(g3*y) - t^4.98/(g3^2*y) - t^6./y - (g1*t^6.07)/(g2*y) - (g2*t^6.87)/(g1*g3^7*y) - (g2*t^6.92)/(g1*g3*y) - t^6.96/(g3^4*y) - (2*t^6.99)/(g3*y) - (g3^5*t^7.05)/y - (g1*t^7.06)/(g2*g3*y) + (g1*g3^2*t^7.08)/(g2*y) - (g2*t^7.86)/(g1*g3^8*y) + (g2*t^7.89)/(g1*g3^5*y) + (g2*g3*t^7.94)/(g1*y) + t^7.98/(g3^2*y) + (g3*t^8.01)/y - (g3^4*t^8.04)/y + (g1*t^8.05)/(g2*g3^2*y) + (g3^7*t^8.07)/y + (g1*g3^7*t^8.13)/(g2*y) - (g1^2*g3*t^8.14)/(g2^2*y) + (g2^2*t^8.81)/(g1^2*g3^6*y) + (g2*t^8.85)/(g1*g3^9*y) + (g2*t^8.91)/(g1*g3^3*y) + (g2*t^8.93)/(g1*y) - t^8.94/(g3^6*y) + (g2*g3^6*t^8.99)/(g1*y) - (t^3.99*y)/g3 - (t^4.98*y)/g3^2 - t^6.*y - (g1*t^6.07*y)/g2 - (g2*t^6.87*y)/(g1*g3^7) - (g2*t^6.92*y)/(g1*g3) - (t^6.96*y)/g3^4 - (2*t^6.99*y)/g3 - g3^5*t^7.05*y - (g1*t^7.06*y)/(g2*g3) + (g1*g3^2*t^7.08*y)/g2 - (g2*t^7.86*y)/(g1*g3^8) + (g2*t^7.89*y)/(g1*g3^5) + (g2*g3*t^7.94*y)/g1 + (t^7.98*y)/g3^2 + g3*t^8.01*y - g3^4*t^8.04*y + (g1*t^8.05*y)/(g2*g3^2) + g3^7*t^8.07*y + (g1*g3^7*t^8.13*y)/g2 - (g1^2*g3*t^8.14*y)/g2^2 + (g2^2*t^8.81*y)/(g1^2*g3^6) + (g2*t^8.85*y)/(g1*g3^9) + (g2*t^8.91*y)/(g1*g3^3) + (g2*t^8.93*y)/g1 - (t^8.94*y)/g3^6 + (g2*g3^6*t^8.99*y)/g1 + (t^8.97*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57622 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6848 | 0.876 | [X:[1.3387], M:[0.9553, 0.6693], q:[0.4818, 0.5265], qb:[0.5182, 0.4896], phi:[0.3307]] | t^2.01 + t^2.87 + t^2.91 + t^2.98 + t^3. + t^3.05 + t^3.91 + 2*t^4.02 + t^4.04 + t^4.13 + t^4.87 + t^4.9 + t^4.92 + 2*t^4.98 + t^5.01 + t^5.03 + t^5.06 + t^5.12 + t^5.46 + t^5.48 + t^5.57 + t^5.6 + t^5.73 + t^5.78 + t^5.83 + t^5.84 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.96 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y | detail |