Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57564 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{5}M_{8}$ 0.6644 0.8244 0.8059 [M:[1.1686, 1.0097, 0.8314, 0.7863, 0.7648, 0.6746, 1.2137, 1.2352], q:[0.3931, 0.4382], qb:[0.5972, 0.7755], phi:[0.449]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28], [-2, 16], [2, -18]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ ${}$ -2 t^2.024 + t^2.494 + t^2.694 + t^3.029 + t^3.106 + t^3.506 + t^3.641 + t^3.706 + t^3.841 + t^4.047 + t^4.118 + t^4.318 + t^4.453 + t^4.518 + t^4.718 + t^4.93 + t^4.988 + t^5.053 + t^5.13 + t^5.188 + t^5.53 + t^5.6 + t^5.665 + t^5.723 + t^5.729 + t^5.8 - 2*t^6. + t^6.058 + t^6.071 + t^6.135 + t^6.142 + t^6.2 + t^6.213 + t^6.335 + t^6.342 + t^6.4 + t^6.535 + t^6.541 + t^6.67 + t^6.741 + t^6.748 + t^6.812 + t^6.947 + t^6.954 + t^7.012 + t^7.076 + t^7.147 + t^7.154 + t^7.212 + t^7.224 + t^7.411 + t^7.424 + t^7.482 + t^7.547 + t^7.553 + t^7.56 + 2*t^7.624 + t^7.682 + t^7.689 + t^7.747 + t^7.753 + t^7.824 + t^7.959 - t^8.024 + t^8.037 + t^8.082 + t^8.094 + t^8.095 + t^8.159 + t^8.165 + t^8.223 + t^8.236 + t^8.365 + t^8.417 + t^8.423 + t^8.436 - 2*t^8.494 + t^8.565 + t^8.571 + t^8.636 - t^8.694 + t^8.707 + t^8.752 + t^8.765 + t^8.771 + t^8.829 + t^8.836 + t^8.907 - t^8.971 + t^8.978 - t^4.347/y - t^6.371/y - t^7.041/y + t^7.318/y - t^7.376/y + t^7.518/y + t^7.653/y + t^7.718/y + t^8.053/y + t^8.13/y + t^8.188/y + t^8.323/y - t^8.394/y + t^8.523/y + t^8.53/y + t^8.6/y + t^8.665/y + t^8.723/y + t^8.729/y + t^8.8/y + t^8.865/y - t^4.347*y - t^6.371*y - t^7.041*y + t^7.318*y - t^7.376*y + t^7.518*y + t^7.653*y + t^7.718*y + t^8.053*y + t^8.13*y + t^8.188*y + t^8.323*y - t^8.394*y + t^8.523*y + t^8.53*y + t^8.6*y + t^8.665*y + t^8.723*y + t^8.729*y + t^8.8*y + t^8.865*y (g1^4*t^2.024)/g2^28 + (g2^7*t^2.494)/g1 + t^2.694/g2^4 + (g2^8*t^3.029)/g1^2 + (g2^15*t^3.106)/g1 + (g1*t^3.506)/g2^7 + (g2^16*t^3.641)/g1^2 + (g1^2*t^3.706)/g2^18 + (g2^5*t^3.841)/g1 + (g1^8*t^4.047)/g2^56 + g1*g2*t^4.118 + (g1^2*t^4.318)/g2^10 + (g2^13*t^4.453)/g1 + (g1^3*t^4.518)/g2^21 + (g1^4*t^4.718)/g2^32 + (g1^2*t^4.93)/g2^2 + (g2^14*t^4.988)/g1^2 + (g1^2*t^5.053)/g2^20 + (g1^3*t^5.13)/g2^13 + (g2^3*t^5.188)/g1 + (g1^5*t^5.53)/g2^35 + (g2^22*t^5.6)/g1^2 + (g1^2*t^5.665)/g2^12 + (g2^4*t^5.723)/g1^2 + (g1^6*t^5.729)/g2^46 + (g2^11*t^5.8)/g1 - 2*t^6. + (g2^16*t^6.058)/g1^4 + (g1^12*t^6.071)/g2^84 + (g2^23*t^6.135)/g1^3 + (g1^5*t^6.142)/g2^27 + (g1*t^6.2)/g2^11 + (g2^30*t^6.213)/g1^2 + (g2^12*t^6.335)/g1^2 + (g1^6*t^6.342)/g2^38 + (g1^2*t^6.4)/g2^22 + (g2*t^6.535)/g1 + (g1^7*t^6.541)/g2^49 + (g2^24*t^6.67)/g1^4 + (g1^8*t^6.741)/g2^60 + (g2^31*t^6.748)/g1^3 + (g1*t^6.812)/g2^3 + (g2^20*t^6.947)/g1^2 + (g1^6*t^6.954)/g2^30 + (g1^2*t^7.012)/g2^14 + (g1^6*t^7.076)/g2^48 + (g2^9*t^7.147)/g1 + (g1^7*t^7.154)/g2^41 + (g1^3*t^7.212)/g2^25 + g2^16*t^7.224 + (g1^4*t^7.411)/g2^36 + g1*g2^5*t^7.424 + (g2^21*t^7.482)/g1^3 + (g1*t^7.547)/g2^13 + (g1^9*t^7.553)/g2^63 + (g2^28*t^7.56)/g1^2 + (2*g1^2*t^7.624)/g2^6 + (g2^10*t^7.682)/g1^2 + (g1^6*t^7.689)/g2^40 + (g1^2*t^7.747)/g2^24 + (g1^10*t^7.753)/g2^74 + (g1^3*t^7.824)/g2^17 + g2^6*t^7.959 - (g1^4*t^8.024)/g2^28 + g1*g2^13*t^8.037 + t^8.082/g2^12 + (g2^29*t^8.094)/g1^3 + (g1^16*t^8.095)/g2^112 + (g1*t^8.159)/g2^5 + (g1^9*t^8.165)/g2^55 + (g1^5*t^8.223)/g2^39 + g1^2*g2^2*t^8.236 + (g1^10*t^8.365)/g2^66 + t^8.417/g1^2 + (g1^6*t^8.423)/g2^50 + (g1^3*t^8.436)/g2^9 - (2*g2^7*t^8.494)/g1 + (g1^11*t^8.565)/g2^77 + g2^14*t^8.571 + (g1^4*t^8.636)/g2^20 - t^8.694/g2^4 + (g2^37*t^8.707)/g1^3 + (g2^12*t^8.752)/g1^4 + (g1^12*t^8.765)/g2^88 + g1*g2^3*t^8.771 + (g2^19*t^8.829)/g1^3 + (g1^5*t^8.836)/g2^31 + (g2^26*t^8.907)/g1^2 - (g1^2*t^8.971)/g2^8 + (g1^10*t^8.978)/g2^58 - t^4.347/(g2^2*y) - (g1^4*t^6.371)/(g2^30*y) - t^7.041/(g2^6*y) + (g1^2*t^7.318)/(g2^10*y) - (g2^6*t^7.376)/(g1^2*y) + (g1^3*t^7.518)/(g2^21*y) + (g2^2*t^7.653)/y + (g1^4*t^7.718)/(g2^32*y) + (g1^2*t^8.053)/(g2^20*y) + (g1^3*t^8.13)/(g2^13*y) + (g2^3*t^8.188)/(g1*y) + (g2^26*t^8.323)/(g1^4*y) - (g1^8*t^8.394)/(g2^58*y) + (g2^15*t^8.523)/(g1^3*y) + (g1^5*t^8.53)/(g2^35*y) + (g2^22*t^8.6)/(g1^2*y) + (g1^2*t^8.665)/(g2^12*y) + (g2^4*t^8.723)/(g1^2*y) + (g1^6*t^8.729)/(g2^46*y) + (g2^11*t^8.8)/(g1*y) + (g1^3*t^8.865)/(g2^23*y) - (t^4.347*y)/g2^2 - (g1^4*t^6.371*y)/g2^30 - (t^7.041*y)/g2^6 + (g1^2*t^7.318*y)/g2^10 - (g2^6*t^7.376*y)/g1^2 + (g1^3*t^7.518*y)/g2^21 + g2^2*t^7.653*y + (g1^4*t^7.718*y)/g2^32 + (g1^2*t^8.053*y)/g2^20 + (g1^3*t^8.13*y)/g2^13 + (g2^3*t^8.188*y)/g1 + (g2^26*t^8.323*y)/g1^4 - (g1^8*t^8.394*y)/g2^58 + (g2^15*t^8.523*y)/g1^3 + (g1^5*t^8.53*y)/g2^35 + (g2^22*t^8.6*y)/g1^2 + (g1^2*t^8.665*y)/g2^12 + (g2^4*t^8.723*y)/g1^2 + (g1^6*t^8.729*y)/g2^46 + (g2^11*t^8.8*y)/g1 + (g1^3*t^8.865*y)/g2^23


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55913 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{7}$ 0.6832 0.859 0.7953 [M:[1.1731, 1.0135, 0.8269, 0.7994, 0.7473, 0.6924, 1.2006], q:[0.3997, 0.4272], qb:[0.5868, 0.7734], phi:[0.4532]] t^2.077 + t^2.242 + t^2.481 + t^2.719 + t^3.04 + t^3.042 + t^3.519 + t^3.602 + t^3.84 + t^4.081 + t^4.155 + 2*t^4.319 + t^4.402 + t^4.484 + t^4.558 + t^4.723 + t^4.797 + t^4.881 + 2*t^4.961 + t^5.118 + t^5.119 + t^5.2 + t^5.282 + t^5.284 + t^5.523 + t^5.597 + t^5.679 + t^5.76 + 2*t^5.761 + t^5.844 - 2*t^6. - t^4.36/y - t^4.36*y detail