Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6437 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{7}$ + ${ }M_{2}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{10}M_{6}$ 0.6644 0.8244 0.8059 [M:[1.0097, 0.7863, 0.9646, 0.8314, 1.1686, 0.7197, 1.0354, 1.2137, 0.6746, 1.2803], q:[0.5972, 0.3931], qb:[0.4382, 0.7755], phi:[0.449]] [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [-1, 5], [1, 15], [2, 2], [-4, 4], [1, -5]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{9}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{10}$, ${ }M_{9}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{9}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}M_{9}$, ${ }M_{4}M_{7}$, ${ }M_{8}M_{9}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}q_{2}^{2}$, ${ }M_{7}\phi_{1}^{2}$ ${}$ -2 t^2.024 + t^2.494 + t^2.694 + t^3.029 + t^3.106 + t^3.506 + t^3.641 + t^3.706 + t^3.841 + t^4.047 + t^4.118 + t^4.318 + t^4.453 + t^4.518 + t^4.718 + t^4.93 + t^4.988 + t^5.053 + t^5.13 + t^5.188 + t^5.53 + t^5.6 + t^5.665 + t^5.723 + t^5.729 + t^5.8 - 2*t^6. + t^6.058 + t^6.071 + t^6.135 + t^6.142 + t^6.2 + t^6.213 + t^6.335 + t^6.342 + t^6.4 + t^6.535 + t^6.541 + t^6.67 + t^6.741 + t^6.748 + t^6.812 + t^6.947 + t^6.954 + t^7.012 + t^7.076 + t^7.147 + t^7.154 + t^7.212 + t^7.224 + t^7.411 + t^7.424 + t^7.482 + t^7.547 + t^7.553 + t^7.56 + 2*t^7.624 + t^7.682 + t^7.689 + t^7.747 + t^7.753 + t^7.824 + t^7.959 - t^8.024 + t^8.037 + t^8.082 + t^8.094 + t^8.095 + t^8.159 + t^8.165 + t^8.223 + t^8.236 + t^8.365 + t^8.417 + t^8.423 + t^8.436 - 2*t^8.494 + t^8.565 + t^8.571 + t^8.636 - t^8.694 + t^8.707 + t^8.752 + t^8.765 + t^8.771 + t^8.829 + t^8.836 + t^8.907 - t^8.971 + t^8.978 - t^4.347/y - t^6.371/y - t^7.041/y + t^7.318/y - t^7.376/y + t^7.518/y + t^7.653/y + t^7.718/y + t^8.053/y + t^8.13/y + t^8.188/y + t^8.323/y - t^8.394/y + t^8.523/y + t^8.53/y + t^8.6/y + t^8.665/y + t^8.723/y + t^8.729/y + t^8.8/y + t^8.865/y - t^4.347*y - t^6.371*y - t^7.041*y + t^7.318*y - t^7.376*y + t^7.518*y + t^7.653*y + t^7.718*y + t^8.053*y + t^8.13*y + t^8.188*y + t^8.323*y - t^8.394*y + t^8.523*y + t^8.53*y + t^8.6*y + t^8.665*y + t^8.723*y + t^8.729*y + t^8.8*y + t^8.865*y (g2^4*t^2.024)/g1^4 + (g1*t^2.494)/g2 + t^2.694/g2^8 + (g1^2*t^3.029)/g2^14 + g1*g2^15*t^3.106 + (g2*t^3.506)/g1 + g1^2*g2^2*t^3.641 + t^3.706/(g1^2*g2^6) + (g1*t^3.841)/g2^5 + (g2^8*t^4.047)/g1^8 + (g2^17*t^4.118)/g1 + (g2^10*t^4.318)/g1^2 + g1*g2^11*t^4.453 + (g2^3*t^4.518)/g1^3 + t^4.718/(g1^4*g2^4) + (g2^26*t^4.93)/g1^2 + (g1^2*t^4.988)/g2^2 + t^5.053/(g1^2*g2^10) + (g2^19*t^5.13)/g1^3 + (g1*t^5.188)/g2^9 + (g2^5*t^5.53)/g1^5 + g1^2*g2^14*t^5.6 + (g2^6*t^5.665)/g1^2 + (g1^2*t^5.723)/g2^22 + t^5.729/(g1^6*g2^2) + g1*g2^7*t^5.8 - 2*t^6. + (g1^4*t^6.058)/g2^28 + (g2^12*t^6.071)/g1^12 + g1^3*g2*t^6.135 + (g2^21*t^6.142)/g1^5 + t^6.2/(g1*g2^7) + g1^2*g2^30*t^6.213 + (g1^2*t^6.335)/g2^6 + (g2^14*t^6.342)/g1^6 + t^6.4/(g1^2*g2^14) + (g1*t^6.535)/g2^13 + (g2^7*t^6.541)/g1^7 + (g1^4*t^6.67)/g2^12 + t^6.741/g1^8 + g1^3*g2^17*t^6.748 + (g2^9*t^6.812)/g1 + g1^2*g2^10*t^6.947 + (g2^30*t^6.954)/g1^6 + (g2^2*t^7.012)/g1^2 + t^7.076/(g1^6*g2^6) + g1*g2^3*t^7.147 + (g2^23*t^7.154)/g1^7 + t^7.212/(g1^3*g2^5) + g2^32*t^7.224 + t^7.411/(g1^4*g2^12) + (g2^25*t^7.424)/g1 + (g1^3*t^7.482)/g2^3 + t^7.547/(g1*g2^11) + (g2^9*t^7.553)/g1^9 + g1^2*g2^26*t^7.56 + (2*g2^18*t^7.624)/g1^2 + (g1^2*t^7.682)/g2^10 + (g2^10*t^7.689)/g1^6 + t^7.747/(g1^2*g2^18) + (g2^2*t^7.753)/g1^10 + (g2^11*t^7.824)/g1^3 + g2^12*t^7.959 - (g2^4*t^8.024)/g1^4 + (g2^41*t^8.037)/g1 + t^8.082/g2^24 + g1^3*g2^13*t^8.094 + (g2^16*t^8.095)/g1^16 + (g2^5*t^8.159)/g1 + (g2^25*t^8.165)/g1^9 + t^8.223/(g1^5*g2^3) + (g2^34*t^8.236)/g1^2 + (g2^18*t^8.365)/g1^10 + (g1^2*t^8.417)/g2^30 + t^8.423/(g1^6*g2^10) + (g2^27*t^8.436)/g1^3 - (2*g1*t^8.494)/g2 + (g2^11*t^8.565)/g1^11 + g2^28*t^8.571 + (g2^20*t^8.636)/g1^4 - t^8.694/g2^8 + g1^3*g2^29*t^8.707 + (g1^4*t^8.752)/g2^36 + (g2^4*t^8.765)/g1^12 + (g2^21*t^8.771)/g1 + (g1^3*t^8.829)/g2^7 + (g2^13*t^8.836)/g1^5 + g1^2*g2^22*t^8.907 - (g2^14*t^8.971)/g1^2 + (g2^34*t^8.978)/g1^10 - t^4.347/(g2^4*y) - t^6.371/(g1^4*y) - t^7.041/(g2^12*y) + (g2^10*t^7.318)/(g1^2*y) - (g1^2*t^7.376)/(g2^18*y) + (g2^3*t^7.518)/(g1^3*y) + (g2^4*t^7.653)/y + t^7.718/(g1^4*g2^4*y) + t^8.053/(g1^2*g2^10*y) + (g2^19*t^8.13)/(g1^3*y) + (g1*t^8.188)/(g2^9*y) + (g1^4*t^8.323)/(g2^8*y) - (g2^4*t^8.394)/(g1^8*y) + (g1^3*t^8.523)/(g2^15*y) + (g2^5*t^8.53)/(g1^5*y) + (g1^2*g2^14*t^8.6)/y + (g2^6*t^8.665)/(g1^2*y) + (g1^2*t^8.723)/(g2^22*y) + t^8.729/(g1^6*g2^2*y) + (g1*g2^7*t^8.8)/y + t^8.865/(g1^3*g2*y) - (t^4.347*y)/g2^4 - (t^6.371*y)/g1^4 - (t^7.041*y)/g2^12 + (g2^10*t^7.318*y)/g1^2 - (g1^2*t^7.376*y)/g2^18 + (g2^3*t^7.518*y)/g1^3 + g2^4*t^7.653*y + (t^7.718*y)/(g1^4*g2^4) + (t^8.053*y)/(g1^2*g2^10) + (g2^19*t^8.13*y)/g1^3 + (g1*t^8.188*y)/g2^9 + (g1^4*t^8.323*y)/g2^8 - (g2^4*t^8.394*y)/g1^8 + (g1^3*t^8.523*y)/g2^15 + (g2^5*t^8.53*y)/g1^5 + g1^2*g2^14*t^8.6*y + (g2^6*t^8.665*y)/g1^2 + (g1^2*t^8.723*y)/g2^22 + (t^8.729*y)/(g1^6*g2^2) + g1*g2^7*t^8.8*y + (t^8.865*y)/(g1^3*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4803 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{7}$ + ${ }M_{2}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ 0.6845 0.8625 0.7936 [M:[1.0156, 0.785, 0.968, 0.8326, 1.1674, 0.7173, 1.032, 1.215, 0.6696], q:[0.5919, 0.3925], qb:[0.4401, 0.7749], phi:[0.4502]] t^2.009 + t^2.152 + t^2.498 + t^2.701 + t^3.047 + t^3.096 + t^3.502 + t^3.645 + t^3.705 + t^4.018 + t^4.1 + t^4.161 + 2*t^4.304 + t^4.446 + t^4.507 + t^4.65 + t^4.71 + t^4.853 + t^4.902 + t^4.996 + t^5.056 + t^5.105 + 2*t^5.199 + t^5.248 + t^5.511 + t^5.594 + 2*t^5.654 + t^5.714 + t^5.748 + 2*t^5.797 - 2*t^6. - t^4.35/y - t^4.35*y detail