Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57513 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 0.989 1.1977 0.8257 [X:[1.5489, 1.4942, 1.5058, 1.4511], M:[0.9511, 0.7091], q:[0.2272, 0.2819], qb:[0.224, 0.267], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [3, 1, 2]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.13 + 2*t^2.85 + t^2.98 + t^3. + t^3.02 + t^3.64 + t^3.71 + t^3.77 + t^4.25 + 2*t^4.35 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.65 + 2*t^4.98 + t^5.11 + t^5.13 + 2*t^5.14 + t^5.21 + t^5.27 + t^5.37 + 3*t^5.71 + t^5.77 + 2*t^5.84 + t^5.85 + t^5.87 + t^5.9 + t^5.97 - 3*t^6. + t^6.03 - t^6.13 - t^6.15 - t^6.16 + t^6.38 + 2*t^6.48 + 2*t^6.5 + t^6.52 + t^6.54 + 2*t^6.56 + 2*t^6.61 + 2*t^6.63 + 3*t^6.64 + t^6.66 + t^6.69 + t^6.71 - t^6.73 + t^6.76 + 3*t^6.77 - t^6.79 - 2*t^6.86 + t^6.9 + t^7.04 + 2*t^7.11 + 4*t^7.21 + t^7.24 + t^7.25 + 2*t^7.27 + t^7.29 + 6*t^7.34 + 3*t^7.35 + 5*t^7.37 + t^7.4 + 2*t^7.42 + 2*t^7.47 + 2*t^7.48 + 6*t^7.5 + t^7.52 + 2*t^7.53 + t^7.55 + t^7.63 + t^7.66 + 3*t^7.83 + t^7.9 + 2*t^7.96 + t^7.98 + 3*t^8. - t^8.02 + t^8.03 - t^8.04 + 2*t^8.06 + t^8.09 + 2*t^8.16 + t^8.19 + t^8.23 - t^8.27 - t^8.36 - t^8.37 - t^8.39 - t^8.4 + t^8.51 - 2*t^8.52 - t^8.54 + 4*t^8.56 + 2*t^8.61 + 2*t^8.63 + t^8.64 + t^8.67 + 3*t^8.69 + 4*t^8.71 + t^8.72 + 2*t^8.74 + 2*t^8.75 + 3*t^8.77 + 2*t^8.79 + 2*t^8.82 + 2*t^8.84 - 9*t^8.85 + t^8.87 + t^8.88 + t^8.89 + 3*t^8.9 + 2*t^8.92 + t^8.95 + 3*t^8.97 - 7*t^8.98 - t^4.5/y - t^6./y - t^6.63/y - t^7.35/y + t^7.5/y + t^7.65/y + (2*t^7.98)/y + t^8.11/y + t^8.14/y + t^8.37/y + t^8.71/y - t^8.75/y + t^8.77/y + (3*t^8.84)/y - t^8.85/y + (2*t^8.87)/y + t^8.9/y - t^8.98/y - t^4.5*y - t^6.*y - t^6.63*y - t^7.35*y + t^7.5*y + t^7.65*y + 2*t^7.98*y + t^8.11*y + t^8.14*y + t^8.37*y + t^8.71*y - t^8.75*y + t^8.77*y + 3*t^8.84*y - t^8.85*y + 2*t^8.87*y + t^8.9*y - t^8.98*y g1^3*g2*g3^2*t^2.13 + 2*g3*t^2.85 + t^2.98/g2 + t^3. + g2*t^3.02 + g1^3*g2^2*g3^2*t^3.64 + t^3.71/(g1^3*g2^2*g3) + g1^3*g2*g3*t^3.77 + g1^6*g2^2*g3^4*t^4.25 + 2*g3*t^4.35 + (2*t^4.48)/g2 + t^4.5 + 2*g2*t^4.52 + (2*t^4.65)/g3 + 2*g1^3*g2*g3^3*t^4.98 + g1^3*g3^2*t^5.11 + g1^3*g2*g3^2*t^5.13 + 2*g1^3*g2^2*g3^2*t^5.14 + t^5.21/(g1^3*g2^2*g3) + g1^3*g2*g3*t^5.27 + t^5.37/(g1^3*g2*g3^2) + 3*g3^2*t^5.71 + g1^6*g2^3*g3^4*t^5.77 + (2*g3*t^5.84)/g2 + g3*t^5.85 + g2*g3*t^5.87 + g1^6*g2^2*g3^3*t^5.9 + t^5.97/g2^2 - 3*t^6. + g2^2*t^6.03 - t^6.13/(g2*g3) - t^6.15/g3 - (g2*t^6.16)/g3 + g1^9*g2^3*g3^6*t^6.38 + 2*g1^3*g2*g3^3*t^6.48 + 2*g1^3*g2^2*g3^3*t^6.5 + g1^3*g2^3*g3^3*t^6.52 + t^6.54/(g1^3*g2^3) + (2*t^6.56)/(g1^3*g2^2) + 2*g1^3*g3^2*t^6.61 + 2*g1^3*g2*g3^2*t^6.63 + 3*g1^3*g2^2*g3^2*t^6.64 + g1^3*g2^3*g3^2*t^6.66 + t^6.69/(g1^3*g2^3*g3) + t^6.71/(g1^3*g2^2*g3) - t^6.73/(g1^3*g2*g3) + g1^3*g3*t^6.76 + 3*g1^3*g2*g3*t^6.77 - g1^3*g2^2*g3*t^6.79 - (2*t^6.86)/(g1^3*g2^2*g3^2) + g1^3*t^6.9 + t^7.04/(g1^3*g3^3) + 2*g1^6*g2^2*g3^5*t^7.11 + 4*g3^2*t^7.21 + g1^6*g2*g3^4*t^7.24 + g1^6*g2^2*g3^4*t^7.25 + 2*g1^6*g2^3*g3^4*t^7.27 + g1^6*g2^4*g3^4*t^7.29 + (6*g3*t^7.34)/g2 + 3*g3*t^7.35 + 5*g2*g3*t^7.37 + g1^6*g2^2*g3^3*t^7.4 + t^7.42/(g1^6*g2^4*g3^2) + g1^6*g2^3*g3^3*t^7.42 + (2*t^7.47)/g2^2 + (2*t^7.48)/g2 + 6*t^7.5 + g2*t^7.52 + 2*g2^2*t^7.53 + g1^6*g2^2*g3^2*t^7.55 + t^7.63/(g2*g3) + (g2*t^7.66)/g3 + 3*g1^3*g2*g3^4*t^7.83 + g1^9*g2^4*g3^6*t^7.9 + 2*g1^3*g3^3*t^7.96 + g1^3*g2*g3^3*t^7.98 + 3*g1^3*g2^2*g3^3*t^8. - g1^3*g2^3*g3^3*t^8.02 + g1^9*g2^3*g3^5*t^8.03 - t^8.04/(g1^3*g2^3) + (2*t^8.06)/(g1^3*g2^2) + (g1^3*g3^2*t^8.09)/g2 + 2*g1^3*g2^3*g3^2*t^8.16 + t^8.19/(g1^3*g2^3*g3) + t^8.23/(g1^3*g2*g3) - g1^3*g2*g3*t^8.27 - t^8.36/(g1^3*g2^2*g3^2) - t^8.37/(g1^3*g2*g3^2) - t^8.39/(g1^3*g3^2) - g1^3*t^8.4 + g1^12*g2^4*g3^8*t^8.51 - (2*t^8.52)/(g1^3*g2*g3^3) - t^8.54/(g1^3*g3^3) + 4*g3^3*t^8.56 + 2*g1^6*g2^2*g3^5*t^8.61 + 2*g1^6*g2^3*g3^5*t^8.63 + g1^6*g2^4*g3^5*t^8.64 + (g3^2*t^8.67)/g2^2 + (3*g3^2*t^8.69)/g2 + 4*g3^2*t^8.71 + g2*g3^2*t^8.72 + 2*g1^6*g2*g3^4*t^8.74 + 2*g1^6*g2^2*g3^4*t^8.75 + 3*g1^6*g2^3*g3^4*t^8.77 + 2*g1^6*g2^4*g3^4*t^8.79 + (2*g3*t^8.82)/g2^2 + (2*g3*t^8.84)/g2 - 9*g3*t^8.85 + g2*g3*t^8.87 + g1^6*g2*g3^3*t^8.88 + g2^2*g3*t^8.89 + 3*g1^6*g2^2*g3^3*t^8.9 + t^8.92/(g1^6*g2^4*g3^2) + g1^6*g2^3*g3^3*t^8.92 + t^8.95/g2^3 + (3*t^8.97)/g2^2 - (7*t^8.98)/g2 - t^4.5/y - t^6./y - (g1^3*g2*g3^2*t^6.63)/y - (g3*t^7.35)/y + t^7.5/y + t^7.65/(g3*y) + (2*g1^3*g2*g3^3*t^7.98)/y + (g1^3*g3^2*t^8.11)/y + (g1^3*g2^2*g3^2*t^8.14)/y + t^8.37/(g1^3*g2*g3^2*y) + (g3^2*t^8.71)/y - (g1^6*g2^2*g3^4*t^8.75)/y + (g1^6*g2^3*g3^4*t^8.77)/y + (3*g3*t^8.84)/(g2*y) - (g3*t^8.85)/y + (2*g2*g3*t^8.87)/y + (g1^6*g2^2*g3^3*t^8.9)/y - t^8.98/(g2*y) - t^4.5*y - t^6.*y - g1^3*g2*g3^2*t^6.63*y - g3*t^7.35*y + t^7.5*y + (t^7.65*y)/g3 + 2*g1^3*g2*g3^3*t^7.98*y + g1^3*g3^2*t^8.11*y + g1^3*g2^2*g3^2*t^8.14*y + (t^8.37*y)/(g1^3*g2*g3^2) + g3^2*t^8.71*y - g1^6*g2^2*g3^4*t^8.75*y + g1^6*g2^3*g3^4*t^8.77*y + (3*g3*t^8.84*y)/g2 - g3*t^8.85*y + 2*g2*g3*t^8.87*y + g1^6*g2^2*g3^3*t^8.9*y - (t^8.98*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59019 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ 0.9873 1.1929 0.8276 [X:[1.5218, 1.5218, 1.4782, 1.4782], M:[0.9782, 0.7311], q:[0.2563, 0.2563], qb:[0.2219, 0.2655], phi:[0.5]] t^2.19 + 3*t^2.93 + t^3. + t^3.07 + t^3.63 + t^3.76 + t^3.81 + t^4.39 + 4*t^4.43 + t^4.5 + 4*t^4.57 + 4*t^5.13 + t^5.19 + 2*t^5.26 + 2*t^5.31 + t^5.82 + 5*t^5.87 + t^5.93 + t^5.95 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
60490 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 0.988 1.1954 0.8265 [X:[1.5276, 1.4724, 1.5276, 1.4724], M:[0.9724, 0.7085], q:[0.227, 0.2822], qb:[0.2454, 0.2454], phi:[0.5]] t^2.13 + 3*t^2.92 + t^3. + t^3.08 + 3*t^3.71 + t^4.25 + 4*t^4.42 + t^4.5 + 4*t^4.58 + 3*t^5.04 + t^5.13 + 4*t^5.21 + t^5.37 + 8*t^5.83 + t^5.92 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
58902 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 0.9488 1.1363 0.835 [X:[1.3983, 1.5277, 1.4723, 1.6017], M:[1.1017, 0.8983], q:[0.2869, 0.1574], qb:[0.3148, 0.2408], phi:[0.5]] t^2.69 + t^2.92 + t^3. + t^3.08 + 2*t^3.31 + t^3.69 + t^3.89 + t^4.11 + 2*t^4.19 + 2*t^4.42 + t^4.5 + 2*t^4.58 + 3*t^4.81 + t^5.19 + 2*t^5.39 + t^5.61 + t^5.83 + t^5.92 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
59409 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 0.9915 1.2041 0.8234 [X:[1.5472, 1.4528, 1.5472, 1.4528], M:[0.9528, 0.6923, 0.9528], q:[0.2062, 0.3007], qb:[0.2465, 0.2465], phi:[0.5]] t^2.08 + 4*t^2.86 + t^3. + t^3.64 + 2*t^3.72 + t^4.15 + 4*t^4.36 + t^4.5 + 4*t^4.64 + 4*t^4.94 + t^5.08 + t^5.14 + 2*t^5.22 + t^5.42 + 10*t^5.72 + 2*t^5.8 + 2*t^5.86 - 6*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail
58853 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ 0.989 1.1975 0.8258 [X:[1.5491, 1.5, 1.5, 1.4509], M:[0.9509, 0.7115], q:[0.2301, 0.2792], qb:[0.2208, 0.2699], phi:[0.5]] t^2.13 + 2*t^2.85 + 3*t^3. + t^3.63 + t^3.72 + t^3.78 + t^4.27 + 2*t^4.35 + 5*t^4.5 + 2*t^4.65 + 2*t^4.99 + 4*t^5.13 + t^5.22 + t^5.28 + t^5.37 + 3*t^5.71 + t^5.77 + 4*t^5.85 + t^5.92 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47905 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 0.9689 1.1591 0.8359 [X:[1.5437, 1.5, 1.5, 1.4563], M:[0.9563], q:[0.2282, 0.2718], qb:[0.2282, 0.2718], phi:[0.5]] 2*t^2.869 + 3*t^3. + 2*t^3.684 + 2*t^3.816 + 2*t^4.369 + 5*t^4.5 + 2*t^4.631 + 2*t^5.184 + 2*t^5.316 + 3*t^5.738 + 3*t^5.869 - t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail