Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58902 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 0.9488 1.1363 0.835 [X:[1.3983, 1.5277, 1.4723, 1.6017], M:[1.1017, 0.8983], q:[0.2869, 0.1574], qb:[0.3148, 0.2408], phi:[0.5]] [X:[[0, -1], [-3, 0], [3, 0], [0, 1]], M:[[0, 1], [0, -1]], q:[[-2, 1], [1, 0]], qb:[[2, 0], [-1, -1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$ ${}M_{1}M_{2}$ -1 t^2.69 + t^2.92 + t^3. + t^3.08 + 2*t^3.31 + t^3.69 + t^3.89 + t^4.11 + 2*t^4.19 + 2*t^4.42 + t^4.5 + 2*t^4.58 + 3*t^4.81 + t^5.19 + 2*t^5.39 + t^5.61 + t^5.83 + t^5.92 - t^6. + t^6.17 + t^6.22 + t^6.31 + t^6.58 + 2*t^6.61 + t^6.67 + t^6.69 + t^6.78 + 3*t^6.89 + t^6.97 + 2*t^7. + t^7.03 + t^7.08 + 4*t^7.11 + 2*t^7.19 + 3*t^7.28 + 3*t^7.33 + t^7.39 + 2*t^7.42 + 6*t^7.5 + 2*t^7.58 + 2*t^7.67 + 4*t^7.72 + t^7.78 + 2*t^7.81 + 5*t^7.89 + t^8. + 2*t^8.08 + 5*t^8.11 - t^8.17 + t^8.22 + t^8.28 + 2*t^8.31 + 3*t^8.39 + t^8.47 + 3*t^8.5 + t^8.53 - t^8.58 + 2*t^8.61 - t^8.69 + t^8.75 + t^8.78 + 3*t^8.83 + t^8.89 - 3*t^8.92 - t^4.5/y - t^6./y + t^7.5/y + t^8.61/y - t^8.69/y + t^8.78/y - t^8.92/y - t^4.5*y - t^6.*y + t^7.5*y + t^8.61*y - t^8.69*y + t^8.78*y - t^8.92*y t^2.69/g2 + g1^3*t^2.92 + t^3. + t^3.08/g1^3 + 2*g2*t^3.31 + (g2^2*t^3.69)/g1^3 + t^3.89/g2^2 + (g1^3*t^4.11)/g2 + (2*t^4.19)/g2 + 2*g1^3*t^4.42 + t^4.5 + (2*t^4.58)/g1^3 + 3*g2*t^4.81 + (g2^2*t^5.19)/g1^3 + (2*t^5.39)/g2^2 + (g1^3*t^5.61)/g2 + g1^6*t^5.83 + g1^3*t^5.92 - t^6. + t^6.17/g1^6 + g1^3*g2*t^6.22 + g2*t^6.31 + t^6.58/g2^3 + 2*g2^2*t^6.61 + t^6.67/(g1^3*g2^3) + (g2^2*t^6.69)/g1^3 + (g2^2*t^6.78)/g1^6 + (3*t^6.89)/g2^2 + t^6.97/(g1^3*g2^2) + (2*g2^3*t^7.)/g1^3 + (g1^6*t^7.03)/g2 + (g2^3*t^7.08)/g1^6 + (4*g1^3*t^7.11)/g2 + (2*t^7.19)/g2 + (3*t^7.28)/(g1^3*g2) + 3*g1^6*t^7.33 + (g2^4*t^7.39)/g1^6 + 2*g1^3*t^7.42 + 6*t^7.5 + (2*t^7.58)/g1^3 + (2*t^7.67)/g1^6 + 4*g1^3*g2*t^7.72 + t^7.78/g2^4 + 2*g2*t^7.81 + (5*g2*t^7.89)/g1^3 + (g1^3*t^8.)/g2^3 + (2*t^8.08)/g2^3 + 5*g2^2*t^8.11 - t^8.17/(g1^3*g2^3) + (g1^6*t^8.22)/g2^2 + (g2^2*t^8.28)/g1^6 + (2*g1^3*t^8.31)/g2^2 + (3*t^8.39)/g2^2 + t^8.47/(g1^3*g2^2) + (3*g2^3*t^8.5)/g1^3 + (g1^6*t^8.53)/g2 - (g2^3*t^8.58)/g1^6 + (2*g1^3*t^8.61)/g2 - t^8.69/g2 + g1^9*t^8.75 + t^8.78/(g1^3*g2) + 3*g1^6*t^8.83 + (g2^4*t^8.89)/g1^6 - 3*g1^3*t^8.92 - t^4.5/y - t^6./y + t^7.5/y + (g1^3*t^8.61)/(g2*y) - t^8.69/(g2*y) + t^8.78/(g1^3*g2*y) - (g1^3*t^8.92)/y - t^4.5*y - t^6.*y + t^7.5*y + (g1^3*t^8.61*y)/g2 - (t^8.69*y)/g2 + (t^8.78*y)/(g1^3*g2) - g1^3*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57513 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 0.989 1.1977 0.8257 [X:[1.5489, 1.4942, 1.5058, 1.4511], M:[0.9511, 0.7091], q:[0.2272, 0.2819], qb:[0.224, 0.267], phi:[0.5]] t^2.13 + 2*t^2.85 + t^2.98 + t^3. + t^3.02 + t^3.64 + t^3.71 + t^3.77 + t^4.25 + 2*t^4.35 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.65 + 2*t^4.98 + t^5.11 + t^5.13 + 2*t^5.14 + t^5.21 + t^5.27 + t^5.37 + 3*t^5.71 + t^5.77 + 2*t^5.84 + t^5.85 + t^5.87 + t^5.9 + t^5.97 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail