Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59409 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 0.9915 1.2041 0.8234 [X:[1.5472, 1.4528, 1.5472, 1.4528], M:[0.9528, 0.6923, 0.9528], q:[0.2062, 0.3007], qb:[0.2465, 0.2465], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [3, 1, 2], [0, -1, 0]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$ ${}$ -6 t^2.08 + 4*t^2.86 + t^3. + t^3.64 + 2*t^3.72 + t^4.15 + 4*t^4.36 + t^4.5 + 4*t^4.64 + 4*t^4.94 + t^5.08 + t^5.14 + 2*t^5.22 + t^5.42 + 10*t^5.72 + 2*t^5.8 + 2*t^5.86 - 6*t^6. - 2*t^6.14 + t^6.23 - t^6.28 + t^6.36 + 4*t^6.44 + 4*t^6.5 + 7*t^6.58 + t^6.64 + 8*t^6.72 - 4*t^6.78 - 2*t^6.86 + 4*t^7.01 + t^7.15 + t^7.21 + 16*t^7.22 + t^7.28 + 2*t^7.3 + 6*t^7.36 + 3*t^7.44 + 12*t^7.5 - t^7.78 + 10*t^7.79 - t^7.86 + 2*t^7.87 + 2*t^7.94 + 4*t^8. + 2*t^8.08 - 4*t^8.22 + t^8.31 - t^8.36 - t^8.42 + t^8.43 + 4*t^8.51 - 4*t^8.56 + 20*t^8.57 + 7*t^8.65 - t^8.71 + 11*t^8.72 + t^8.78 + 8*t^8.8 - 28*t^8.86 + 2*t^8.94 - t^4.5/y - t^6./y - t^6.58/y - (2*t^7.36)/y + t^7.5/y + (2*t^7.64)/y + (4*t^7.94)/y + t^8.42/y - t^8.65/y + (7*t^8.72)/y + (2*t^8.8)/y - (2*t^8.86)/y - t^4.5*y - t^6.*y - t^6.58*y - 2*t^7.36*y + t^7.5*y + 2*t^7.64*y + 4*t^7.94*y + t^8.42*y - t^8.65*y + 7*t^8.72*y + 2*t^8.8*y - 2*t^8.86*y g1^3*g2*g3^2*t^2.08 + (2*t^2.86)/g2 + 2*g3*t^2.86 + t^3. + t^3.64/(g1^3*g2^2*g3) + g1^3*g2*g3*t^3.72 + g1^3*g2^2*g3^2*t^3.72 + g1^6*g2^2*g3^4*t^4.15 + (2*t^4.36)/g2 + 2*g3*t^4.36 + t^4.5 + 2*g2*t^4.64 + (2*t^4.64)/g3 + 2*g1^3*g3^2*t^4.94 + 2*g1^3*g2*g3^3*t^4.94 + g1^3*g2*g3^2*t^5.08 + t^5.14/(g1^3*g2^2*g3) + g1^3*g2*g3*t^5.22 + g1^3*g2^2*g3^2*t^5.22 + t^5.42/(g1^3*g2*g3^2) + (3*t^5.72)/g2^2 + (4*g3*t^5.72)/g2 + 3*g3^2*t^5.72 + g1^6*g2^2*g3^3*t^5.8 + g1^6*g2^3*g3^4*t^5.8 + t^5.86/g2 + g3*t^5.86 - 4*t^6. - t^6./(g2*g3) - g2*g3*t^6. - g2*t^6.14 - t^6.14/g3 + g1^9*g2^3*g3^6*t^6.23 - (g2*t^6.28)/g3 + t^6.36/(g1^3*g2^3) + 2*g1^3*g3^2*t^6.44 + 2*g1^3*g2*g3^3*t^6.44 + (2*t^6.5)/(g1^3*g2^2) + (2*t^6.5)/(g1^3*g2^3*g3) + 2*g1^3*g3*t^6.58 + 3*g1^3*g2*g3^2*t^6.58 + 2*g1^3*g2^2*g3^3*t^6.58 + t^6.64/(g1^3*g2^2*g3) + g1^3*t^6.72 + 3*g1^3*g2*g3*t^6.72 + 3*g1^3*g2^2*g3^2*t^6.72 + g1^3*g2^3*g3^3*t^6.72 - (2*t^6.78)/(g1^3*g2^2*g3^2) - (2*t^6.78)/(g1^3*g2*g3) - 2*g1^3*g2^2*g3*t^6.86 + 2*g1^6*g2*g3^4*t^7.01 + 2*g1^6*g2^2*g3^5*t^7.01 + g1^6*g2^2*g3^4*t^7.15 + t^7.21/(g1^3*g3^3) + (4*t^7.22)/g2^2 + (8*g3*t^7.22)/g2 + 4*g3^2*t^7.22 + t^7.28/(g1^6*g2^4*g3^2) + g1^6*g2^2*g3^3*t^7.3 + g1^6*g2^3*g3^4*t^7.3 + (3*t^7.36)/g2 + 3*g3*t^7.36 + g1^6*g2^2*g3^2*t^7.44 + g1^6*g2^3*g3^3*t^7.44 + g1^6*g2^4*g3^4*t^7.44 + 6*t^7.5 + (3*t^7.5)/(g2*g3) + 3*g2*g3*t^7.5 - (g2*t^7.78)/g3 + (3*g1^3*g3^2*t^7.79)/g2 + 4*g1^3*g3^3*t^7.79 + 3*g1^3*g2*g3^4*t^7.79 - t^7.86/(g1^3*g2^3) + g1^9*g2^3*g3^5*t^7.87 + g1^9*g2^4*g3^6*t^7.87 + g1^3*g3^2*t^7.94 + g1^3*g2*g3^3*t^7.94 + (2*t^8.)/(g1^3*g2^2) + (2*t^8.)/(g1^3*g2^3*g3) + g1^3*g3*t^8.08 + g1^3*g2^2*g3^3*t^8.08 - g1^3*t^8.22 - g1^3*g2*g3*t^8.22 - g1^3*g2^2*g3^2*t^8.22 - g1^3*g2^3*g3^3*t^8.22 + g1^12*g2^4*g3^8*t^8.31 - g1^3*g2^2*g3*t^8.36 - t^8.42/(g1^3*g2*g3^2) + (g3^2*t^8.43)/g2^2 + 2*g1^6*g2*g3^4*t^8.51 + 2*g1^6*g2^2*g3^5*t^8.51 - (2*t^8.56)/(g1^3*g2*g3^3) - (2*t^8.56)/(g1^3*g3^2) + (4*t^8.57)/g2^3 + (6*g3*t^8.57)/g2^2 + (6*g3^2*t^8.57)/g2 + 4*g3^3*t^8.57 + 2*g1^6*g2*g3^3*t^8.65 + 3*g1^6*g2^2*g3^4*t^8.65 + 2*g1^6*g2^3*g3^5*t^8.65 - t^8.71/(g1^3*g3^3) + (4*t^8.72)/g2^2 + (3*g3*t^8.72)/g2 + 4*g3^2*t^8.72 + t^8.78/(g1^6*g2^4*g3^2) + g1^6*g2*g3^2*t^8.8 + 3*g1^6*g2^2*g3^3*t^8.8 + 3*g1^6*g2^3*g3^4*t^8.8 + g1^6*g2^4*g3^5*t^8.8 - (12*t^8.86)/g2 - (2*t^8.86)/(g2^2*g3) - 12*g3*t^8.86 - 2*g2*g3^2*t^8.86 + g1^6*g2^2*g3^2*t^8.94 + g1^6*g2^4*g3^4*t^8.94 - t^4.5/y - t^6./y - (g1^3*g2*g3^2*t^6.58)/y - t^7.36/(g2*y) - (g3*t^7.36)/y + t^7.5/y + (g2*t^7.64)/y + t^7.64/(g3*y) + (2*g1^3*g3^2*t^7.94)/y + (2*g1^3*g2*g3^3*t^7.94)/y + t^8.42/(g1^3*g2*g3^2*y) - (g1^6*g2^2*g3^4*t^8.65)/y + t^8.72/(g2^2*y) + (5*g3*t^8.72)/(g2*y) + (g3^2*t^8.72)/y + (g1^6*g2^2*g3^3*t^8.8)/y + (g1^6*g2^3*g3^4*t^8.8)/y - t^8.86/(g2*y) - (g3*t^8.86)/y - t^4.5*y - t^6.*y - g1^3*g2*g3^2*t^6.58*y - (t^7.36*y)/g2 - g3*t^7.36*y + t^7.5*y + g2*t^7.64*y + (t^7.64*y)/g3 + 2*g1^3*g3^2*t^7.94*y + 2*g1^3*g2*g3^3*t^7.94*y + (t^8.42*y)/(g1^3*g2*g3^2) - g1^6*g2^2*g3^4*t^8.65*y + (t^8.72*y)/g2^2 + (5*g3*t^8.72*y)/g2 + g3^2*t^8.72*y + g1^6*g2^2*g3^3*t^8.8*y + g1^6*g2^3*g3^4*t^8.8*y - (t^8.86*y)/g2 - g3*t^8.86*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57513 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$ 0.989 1.1977 0.8257 [X:[1.5489, 1.4942, 1.5058, 1.4511], M:[0.9511, 0.7091], q:[0.2272, 0.2819], qb:[0.224, 0.267], phi:[0.5]] t^2.13 + 2*t^2.85 + t^2.98 + t^3. + t^3.02 + t^3.64 + t^3.71 + t^3.77 + t^4.25 + 2*t^4.35 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.65 + 2*t^4.98 + t^5.11 + t^5.13 + 2*t^5.14 + t^5.21 + t^5.27 + t^5.37 + 3*t^5.71 + t^5.77 + 2*t^5.84 + t^5.85 + t^5.87 + t^5.9 + t^5.97 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail