Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57492 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4759 1.6897 0.8735 [X:[], M:[0.984, 0.9818], q:[0.5102, 0.4739], qb:[0.508, 0.476], phi:[0.3387]] [X:[], M:[[0, -3, 3], [1, 6, 0]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ ${}$ -4 t^2.03 + t^2.85 + 3*t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^3.97 + t^4.06 + t^4.07 + 2*t^4.88 + 4*t^4.98 + 2*t^4.99 + t^5.09 + t^5.39 + t^5.4 + t^5.49 + t^5.5 + t^5.7 + 3*t^5.8 + t^5.81 + 2*t^5.89 + 5*t^5.9 + t^5.91 + t^5.92 + t^5.99 - 4*t^6. + t^6.01 + t^6.1 - t^6.11 + 2*t^6.41 + 2*t^6.51 + t^6.72 + 3*t^6.81 + 3*t^6.82 + 4*t^6.91 + 3*t^6.92 + 2*t^6.93 + 3*t^7.01 + 3*t^7.02 + t^7.03 - t^7.11 + t^7.12 - t^7.13 + t^7.31 + t^7.33 + t^7.42 + t^7.43 + t^7.52 + t^7.53 + t^7.62 + t^7.64 + 3*t^7.73 + 7*t^7.83 + 4*t^7.84 + 4*t^7.92 + 3*t^7.93 + 7*t^7.94 + 3*t^7.95 - 2*t^8.03 + t^8.04 + 2*t^8.05 - t^8.14 + t^8.24 + t^8.25 + 4*t^8.34 + 4*t^8.35 - t^8.43 + 3*t^8.44 + t^8.45 + t^8.46 - t^8.53 - t^8.54 - t^8.55 + t^8.64 + t^8.66 + 2*t^8.74 + 6*t^8.75 + t^8.76 + t^8.77 + 9*t^8.84 - 2*t^8.85 + 8*t^8.86 + t^8.87 + t^8.88 + 2*t^8.94 - 4*t^8.95 - 5*t^8.96 + 2*t^8.97 - t^4.02/y - t^5.03/y - t^6.05/y - t^6.87/y - (2*t^6.96)/y - (2*t^6.97)/y - t^7.06/y + t^7.98/y - t^8.08/y + (3*t^8.8)/y + t^8.81/y + t^8.89/y + (3*t^8.9)/y + t^8.91/y - (2*t^8.99)/y - t^4.02*y - t^5.03*y - t^6.05*y - t^6.87*y - 2*t^6.96*y - 2*t^6.97*y - t^7.06*y + t^7.98*y - t^8.08*y + 3*t^8.8*y + t^8.81*y + t^8.89*y + 3*t^8.9*y + t^8.91*y - 2*t^8.99*y (g2^2*t^2.03)/g3^2 + g1*g3^6*t^2.85 + 2*g1*g2^6*t^2.95 + (g3^3*t^2.95)/g2^3 + (g3^6*t^2.96)/(g1*g2^12) + g1*g2*g3^5*t^3.87 + (g1*g2^7*t^3.96)/g3 + (g3^5*t^3.97)/(g1*g2^11) + (g2^4*t^4.06)/g3^4 + t^4.07/(g1*g2^5*g3) + 2*g1*g2^2*g3^4*t^4.88 + (3*g1*g2^8*t^4.98)/g3^2 + (g3*t^4.98)/g2 + (2*g3^4*t^4.99)/(g1*g2^10) + t^5.09/(g1*g2^4*g3^2) + (g1*t^5.39)/(g2^11*g3) + g2^7*g3^11*t^5.4 + g2^13*g3^5*t^5.49 + t^5.5/(g1*g2^23*g3) + g1^2*g3^12*t^5.7 + 2*g1^2*g2^6*g3^6*t^5.8 + (g1*g3^9*t^5.8)/g2^3 + (g3^12*t^5.81)/g2^12 + 2*g1^2*g2^12*t^5.89 + 3*g1*g2^3*g3^3*t^5.9 + (2*g3^6*t^5.9)/g2^6 + (g3^9*t^5.91)/(g1*g2^15) + (g3^12*t^5.92)/(g1^2*g2^24) + (g1*g2^9*t^5.99)/g3^3 - 4*t^6. + (g3^3*t^6.01)/(g1*g2^9) + t^6.1/(g1*g2^3*g3^3) - t^6.11/(g1^2*g2^12) + (g1*t^6.41)/(g2^10*g3^2) + g2^8*g3^10*t^6.41 + t^6.51/(g1*g2^22*g3^2) + g2^14*g3^4*t^6.51 + g1^2*g2*g3^11*t^6.72 + 3*g1^2*g2^7*g3^5*t^6.81 + (g1*g3^8*t^6.82)/g2^2 + (2*g3^11*t^6.82)/g2^11 + (g1^2*g2^13*t^6.91)/g3 + 3*g1*g2^4*g3^2*t^6.91 + (3*g3^5*t^6.92)/g2^5 + (g3^8*t^6.93)/(g1*g2^14) + (g3^11*t^6.93)/(g1^2*g2^23) + (3*g1*g2^10*t^7.01)/g3^4 + (3*g3^2*t^7.02)/(g1*g2^8) + (g3^5*t^7.03)/(g1^2*g2^17) - (g2^7*t^7.11)/g3^7 + t^7.12/(g1*g2^2*g3^4) - t^7.13/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.31)/g3^3 + g2^3*g3^15*t^7.33 + (2*g1*t^7.42)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.42 - t^7.43/g2^18 + 2*g2^9*g3^9*t^7.43 - t^7.52/(g2^12*g3^6) + 2*g2^15*g3^3*t^7.52 + (2*t^7.53)/(g1*g2^21*g3^3) - (g2^6*g3^6*t^7.53)/g1 + (g2^21*t^7.62)/g3^3 + t^7.64/(g1^3*g2^33*g3^3) + 3*g1^2*g2^2*g3^10*t^7.73 + 6*g1^2*g2^8*g3^4*t^7.83 + (g1*g3^7*t^7.83)/g2 + (4*g3^10*t^7.84)/g2^10 + (4*g1^2*g2^14*t^7.92)/g3^2 + 3*g1*g2^5*g3*t^7.93 + (6*g3^4*t^7.94)/g2^4 + (g3^7*t^7.94)/(g1*g2^13) + (3*g3^10*t^7.95)/(g1^2*g2^22) + (g1*g2^11*t^8.03)/g3^5 - (3*g2^2*t^8.03)/g3^2 + (g3*t^8.04)/(g1*g2^7) + (2*g3^4*t^8.05)/(g1^2*g2^16) - (g2^8*t^8.13)/g3^8 + t^8.13/(g1*g2*g3^5) - t^8.14/(g1^2*g2^10*g3^2) + (g1^2*g3^5*t^8.24)/g2^11 + g1*g2^7*g3^17*t^8.25 + (g1^2*t^8.34)/(g2^5*g3) + (g1*g3^2*t^8.34)/g2^14 + 2*g1*g2^13*g3^11*t^8.34 + (2*g3^5*t^8.35)/g2^23 + g2^4*g3^14*t^8.35 + (g3^17*t^8.35)/(g1*g2^5) - (g1^2*g2*t^8.43)/g3^7 + (g1*t^8.44)/(g2^8*g3^4) + 2*g2^10*g3^8*t^8.44 + (g3^2*t^8.45)/(g1*g2^26) + (g3^5*t^8.46)/(g1^2*g2^35) - (g1*g2^25*t^8.53)/g3 - (2*t^8.54)/(g2^11*g3^7) + g2^16*g3^2*t^8.54 + t^8.55/(g1*g2^20*g3^4) - t^8.55/(g1^2*g2^29*g3) - (2*g2^7*g3^5*t^8.55)/g1 + g1^3*g3^18*t^8.55 - (g2^13*t^8.64)/(g1*g3) + 2*g1^3*g2^6*g3^12*t^8.64 - t^8.65/(g1^2*g2^23*g3^7) + (g1^2*g3^15*t^8.65)/g2^3 + (g1*g3^18*t^8.66)/g2^12 + 2*g1^3*g2^12*g3^6*t^8.74 + 4*g1^2*g2^3*g3^9*t^8.75 + (2*g1*g3^12*t^8.75)/g2^6 + (g3^15*t^8.76)/g2^15 + (g3^18*t^8.77)/(g1*g2^24) + 2*g1^3*g2^18*t^8.84 + 7*g1^2*g2^9*g3^3*t^8.84 - 2*g1*g3^6*t^8.85 + (6*g3^9*t^8.86)/g2^9 + (2*g3^12*t^8.86)/(g1*g2^18) + (g3^15*t^8.87)/(g1^2*g2^27) + (g3^18*t^8.88)/(g1^3*g2^36) + (2*g1^2*g2^15*t^8.94)/g3^3 - 6*g1*g2^6*t^8.95 + (2*g3^3*t^8.95)/g2^3 - (5*g3^6*t^8.96)/(g1*g2^12) + (2*g3^9*t^8.97)/(g1^2*g2^21) - (g2*t^4.02)/(g3*y) - (g2^2*t^5.03)/(g3^2*y) - (g2^3*t^6.05)/(g3^3*y) - (g1*g2*g3^5*t^6.87)/y - (2*g1*g2^7*t^6.96)/(g3*y) - (g3^2*t^6.97)/(g2^2*y) - (g3^5*t^6.97)/(g1*g2^11*y) - (g2^4*t^7.06)/(g3^4*y) + (g3*t^7.98)/(g2*y) - (g2^5*t^8.08)/(g3^5*y) + (2*g1^2*g2^6*g3^6*t^8.8)/y + (g1*g3^9*t^8.8)/(g2^3*y) + (g3^12*t^8.81)/(g2^12*y) + (g1^2*g2^12*t^8.89)/y + (g1*g2^3*g3^3*t^8.9)/y + (2*g3^6*t^8.9)/(g2^6*y) + (g3^9*t^8.91)/(g1*g2^15*y) - (2*g1*g2^9*t^8.99)/(g3^3*y) - (g2*t^4.02*y)/g3 - (g2^2*t^5.03*y)/g3^2 - (g2^3*t^6.05*y)/g3^3 - g1*g2*g3^5*t^6.87*y - (2*g1*g2^7*t^6.96*y)/g3 - (g3^2*t^6.97*y)/g2^2 - (g3^5*t^6.97*y)/(g1*g2^11) - (g2^4*t^7.06*y)/g3^4 + (g3*t^7.98*y)/g2 - (g2^5*t^8.08*y)/g3^5 + 2*g1^2*g2^6*g3^6*t^8.8*y + (g1*g3^9*t^8.8*y)/g2^3 + (g3^12*t^8.81*y)/g2^12 + g1^2*g2^12*t^8.89*y + g1*g2^3*g3^3*t^8.9*y + (2*g3^6*t^8.9*y)/g2^6 + (g3^9*t^8.91*y)/(g1*g2^15) - (2*g1*g2^9*t^8.99*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59416 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4756 1.6874 0.8745 [X:[], M:[0.9923, 0.977], q:[0.5194, 0.4733], qb:[0.5036, 0.4882], phi:[0.3359]] t^2.02 + t^2.88 + 2*t^2.93 + t^2.98 + t^3.02 + t^3.89 + t^3.94 + 2*t^4.03 + t^4.08 + 2*t^4.9 + 3*t^4.95 + t^4.99 + 2*t^5.04 + t^5.08 + t^5.41 + t^5.45 + t^5.49 + t^5.54 + t^5.77 + 2*t^5.82 + 3*t^5.86 + 4*t^5.91 + 3*t^5.95 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
58901 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4964 1.7276 0.8661 [X:[], M:[0.9875, 0.9854, 0.702], q:[0.5084, 0.4792], qb:[0.5062, 0.4813], phi:[0.3375]] t^2.02 + t^2.11 + t^2.88 + 3*t^2.96 + t^2.97 + t^3.97 + t^3.98 + t^4.05 + t^4.06 + t^4.13 + t^4.21 + 2*t^4.91 + 3*t^4.98 + 4*t^4.99 + 2*t^5.06 + 2*t^5.07 + t^5.08 + t^5.41 + t^5.42 + t^5.49 + t^5.5 + t^5.76 + 3*t^5.84 + t^5.85 + 2*t^5.91 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
58875 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2527 1.4758 0.8488 [X:[1.4684], M:[0.8987, 0.7342], q:[0.7425, 0.211], qb:[0.5232, 0.3206], phi:[0.3671]] 3*t^2.2 + 2*t^2.7 + t^3.19 + t^3.3 + t^3.8 + t^4.29 + 7*t^4.41 + 2*t^4.59 + 7*t^4.9 + 2*t^5.2 + 6*t^5.39 + 2*t^5.51 + 2*t^5.7 + 2*t^5.89 + 2*t^6. - t^4.1/y - t^5.2/y - t^4.1*y - t^5.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47909 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4751 1.6878 0.874 [M:[0.9839], q:[0.4918, 0.4918], qb:[0.5082, 0.476], phi:[0.3387]] t^2.032 + 2*t^2.904 + t^2.952 + 2*t^3. + 2*t^3.92 + 2*t^4.016 + t^4.064 + 4*t^4.936 + t^4.984 + 4*t^5.032 + t^5.397 + 2*t^5.443 + t^5.493 + 3*t^5.807 + 2*t^5.855 + 4*t^5.904 + 4*t^5.952 - 3*t^6. - t^4.016/y - t^5.032/y - t^4.016*y - t^5.032*y detail