Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47909 SU3adj1nf2 $q_1q_2\tilde{q}_1^2$ + $ M_1\phi_1^3$ 1.4751 1.6878 0.874 [X:[], M:[0.9839], q:[0.4918, 0.4918], qb:[0.5082, 0.476], phi:[0.3387]] [X:[], M:[[0, -3, 3]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1^4$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ M_1q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$ . -3 t^2.03 + 2*t^2.9 + t^2.95 + 2*t^3. + 2*t^3.92 + 2*t^4.02 + t^4.06 + 4*t^4.94 + t^4.98 + 4*t^5.03 + t^5.4 + 2*t^5.44 + t^5.49 + 3*t^5.81 + 2*t^5.86 + 4*t^5.9 + 4*t^5.95 - 3*t^6. + 2*t^6.05 + t^6.41 + 2*t^6.46 + t^6.51 + 4*t^6.82 + 2*t^6.87 + 7*t^6.92 + 6*t^6.97 + 4*t^7.06 - t^7.11 + t^7.33 + t^7.43 + 6*t^7.47 - 2*t^7.48 - t^7.52 + 2*t^7.53 + t^7.62 + 10*t^7.84 + 2*t^7.89 + 14*t^7.94 + 4*t^7.98 + 2*t^8.08 - t^8.13 + 2*t^8.3 + 5*t^8.35 + 2*t^8.39 + 2*t^8.4 + 2*t^8.44 - 3*t^8.54 - 2*t^8.59 + 4*t^8.71 + 3*t^8.76 + 6*t^8.81 + 12*t^8.86 - 6*t^8.9 + 11*t^8.95 - t^4.02/y - t^5.03/y - t^6.05/y - (2*t^6.92)/y - t^6.97/y - (2*t^7.02)/y - t^7.06/y + t^7.98/y - t^8.08/y + t^8.81/y + (2*t^8.86)/y + (4*t^8.9)/y - t^4.02*y - t^5.03*y - t^6.05*y - 2*t^6.92*y - t^6.97*y - 2*t^7.02*y - t^7.06*y + t^7.98*y - t^8.08*y + t^8.81*y + 2*t^8.86*y + 4*t^8.9*y (g2^2*t^2.03)/g3^2 + g1*g3^6*t^2.9 + (g3^6*t^2.9)/(g1*g2^12) + (g3^3*t^2.95)/g2^3 + t^3./(g1*g2^6) + g1*g2^6*t^3. + (g3^5*t^3.92)/(g1*g2^11) + g1*g2*g3^5*t^3.92 + t^4.02/(g1*g2^5*g3) + (g1*g2^7*t^4.02)/g3 + (g2^4*t^4.06)/g3^4 + (2*g3^4*t^4.94)/(g1*g2^10) + 2*g1*g2^2*g3^4*t^4.94 + (g3*t^4.98)/g2 + (2*t^5.03)/(g1*g2^4*g3^2) + (2*g1*g2^8*t^5.03)/g3^2 + g2^7*g3^11*t^5.4 + t^5.44/(g1*g2^23*g3) + (g1*t^5.44)/(g2^11*g3) + g2^13*g3^5*t^5.49 + g1^2*g3^12*t^5.81 + (g3^12*t^5.81)/(g1^2*g2^24) + (g3^12*t^5.81)/g2^12 + (g3^9*t^5.86)/(g1*g2^15) + (g1*g3^9*t^5.86)/g2^3 + (g3^6*t^5.9)/(g1^2*g2^18) + (2*g3^6*t^5.9)/g2^6 + g1^2*g2^6*g3^6*t^5.9 + (2*g3^3*t^5.95)/(g1*g2^9) + 2*g1*g2^3*g3^3*t^5.95 - 3*t^6. + t^6.05/(g1*g2^3*g3^3) + (g1*g2^9*t^6.05)/g3^3 + g2^8*g3^10*t^6.41 + t^6.46/(g1*g2^22*g3^2) + (g1*t^6.46)/(g2^10*g3^2) + g2^14*g3^4*t^6.51 + (g3^11*t^6.82)/(g1^2*g2^23) + (2*g3^11*t^6.82)/g2^11 + g1^2*g2*g3^11*t^6.82 + (g3^8*t^6.87)/(g1*g2^14) + (g1*g3^8*t^6.87)/g2^2 + (2*g3^5*t^6.92)/(g1^2*g2^17) + (3*g3^5*t^6.92)/g2^5 + 2*g1^2*g2^7*g3^5*t^6.92 + (3*g3^2*t^6.97)/(g1*g2^8) + 3*g1*g2^4*g3^2*t^6.97 + (2*t^7.06)/(g1*g2^2*g3^4) + (2*g1*g2^10*t^7.06)/g3^4 - (g2^7*t^7.11)/g3^7 + g2^3*g3^15*t^7.33 - t^7.43/g2^18 + 2*g2^9*g3^9*t^7.43 + t^7.47/(g1^3*g2^33*g3^3) + (2*t^7.47)/(g1*g2^21*g3^3) + (2*g1*t^7.47)/(g2^9*g3^3) + (g1^3*g2^3*t^7.47)/g3^3 - (g2^6*g3^6*t^7.48)/g1 - g1*g2^18*g3^6*t^7.48 - t^7.52/(g2^12*g3^6) + 2*g2^15*g3^3*t^7.53 + (g2^21*t^7.62)/g3^3 + (3*g3^10*t^7.84)/(g1^2*g2^22) + (4*g3^10*t^7.84)/g2^10 + 3*g1^2*g2^2*g3^10*t^7.84 + (g3^7*t^7.89)/(g1*g2^13) + (g1*g3^7*t^7.89)/g2 + (4*g3^4*t^7.94)/(g1^2*g2^16) + (6*g3^4*t^7.94)/g2^4 + 4*g1^2*g2^8*g3^4*t^7.94 + (2*g3*t^7.98)/(g1*g2^7) + 2*g1*g2^5*g3*t^7.98 + t^8.03/(g1^2*g2^10*g3^2) - (2*g2^2*t^8.03)/g3^2 + (g1^2*g2^14*t^8.03)/g3^2 + t^8.08/(g1*g2*g3^5) + (g1*g2^11*t^8.08)/g3^5 - (g2^8*t^8.13)/g3^8 + (g3^17*t^8.3)/(g1*g2^5) + g1*g2^7*g3^17*t^8.3 + (g3^5*t^8.35)/(g1^2*g2^35) + (2*g3^5*t^8.35)/g2^23 + (g1^2*g3^5*t^8.35)/g2^11 + g2^4*g3^14*t^8.35 + (g3^2*t^8.39)/(g1*g2^26) + (g1*g3^2*t^8.39)/g2^14 + (g2*g3^11*t^8.4)/g1 + g1*g2^13*g3^11*t^8.4 + 2*g2^10*g3^8*t^8.44 + t^8.49/(g1*g2^20*g3^4) + (g1*t^8.49)/(g2^8*g3^4) - (g2^7*g3^5*t^8.49)/g1 - g1*g2^19*g3^5*t^8.49 - t^8.54/(g1^2*g2^23*g3^7) - (2*t^8.54)/(g2^11*g3^7) - (g1^2*g2*t^8.54)/g3^7 + g2^16*g3^2*t^8.54 - (g2^13*t^8.59)/(g1*g3) - (g1*g2^25*t^8.59)/g3 + g1^3*g3^18*t^8.71 + (g3^18*t^8.71)/(g1^3*g2^36) + (g3^18*t^8.71)/(g1*g2^24) + (g1*g3^18*t^8.71)/g2^12 + (g3^15*t^8.76)/(g1^2*g2^27) + (g3^15*t^8.76)/g2^15 + (g1^2*g3^15*t^8.76)/g2^3 + (g3^12*t^8.81)/(g1^3*g2^30) + (2*g3^12*t^8.81)/(g1*g2^18) + (2*g1*g3^12*t^8.81)/g2^6 + g1^3*g2^6*g3^12*t^8.81 + (3*g3^9*t^8.86)/(g1^2*g2^21) + (6*g3^9*t^8.86)/g2^9 + 3*g1^2*g2^3*g3^9*t^8.86 - 3*g1*g3^6*t^8.9 - (3*g3^6*t^8.9)/(g1*g2^12) + (4*g3^3*t^8.95)/(g1^2*g2^15) + (3*g3^3*t^8.95)/g2^3 + 4*g1^2*g2^9*g3^3*t^8.95 - (g2*t^4.02)/(g3*y) - (g2^2*t^5.03)/(g3^2*y) - (g2^3*t^6.05)/(g3^3*y) - (g3^5*t^6.92)/(g1*g2^11*y) - (g1*g2*g3^5*t^6.92)/y - (g3^2*t^6.97)/(g2^2*y) - t^7.02/(g1*g2^5*g3*y) - (g1*g2^7*t^7.02)/(g3*y) - (g2^4*t^7.06)/(g3^4*y) + (g3*t^7.98)/(g2*y) - (g2^5*t^8.08)/(g3^5*y) + (g3^12*t^8.81)/(g2^12*y) + (g3^9*t^8.86)/(g1*g2^15*y) + (g1*g3^9*t^8.86)/(g2^3*y) + (g3^6*t^8.9)/(g1^2*g2^18*y) + (2*g3^6*t^8.9)/(g2^6*y) + (g1^2*g2^6*g3^6*t^8.9)/y - (g2*t^4.02*y)/g3 - (g2^2*t^5.03*y)/g3^2 - (g2^3*t^6.05*y)/g3^3 - (g3^5*t^6.92*y)/(g1*g2^11) - g1*g2*g3^5*t^6.92*y - (g3^2*t^6.97*y)/g2^2 - (t^7.02*y)/(g1*g2^5*g3) - (g1*g2^7*t^7.02*y)/g3 - (g2^4*t^7.06*y)/g3^4 + (g3*t^7.98*y)/g2 - (g2^5*t^8.08*y)/g3^5 + (g3^12*t^8.81*y)/g2^12 + (g3^9*t^8.86*y)/(g1*g2^15) + (g1*g3^9*t^8.86*y)/g2^3 + (g3^6*t^8.9*y)/(g1^2*g2^18) + (2*g3^6*t^8.9*y)/g2^6 + g1^2*g2^6*g3^6*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47867 SU3adj1nf2 $q_1q_2\tilde{q}_1^2$ 1.4741 1.6835 0.8756 [X:[], M:[], q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] t^2.01 + 2*t^2.97 + 2*t^3. + t^3.02 + 2*t^3.97 + 2*t^4.01 + t^4.02 + 4*t^4.98 + 4*t^5.01 + t^5.03 + t^5.46 + 2*t^5.48 + t^5.5 + 3*t^5.93 + 3*t^5.97 + 4*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail