Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58901 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4964 | 1.7276 | 0.8661 | [X:[], M:[0.9875, 0.9854, 0.702], q:[0.5084, 0.4792], qb:[0.5062, 0.4813], phi:[0.3375]] | [X:[], M:[[0, -3, 3], [1, 6, 0], [-1, -1, -5]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}$ | -4 | t^2.02 + t^2.11 + t^2.88 + 3*t^2.96 + t^2.97 + t^3.97 + t^3.98 + t^4.05 + t^4.06 + t^4.13 + t^4.21 + 2*t^4.91 + 3*t^4.98 + 4*t^4.99 + 2*t^5.06 + 2*t^5.07 + t^5.08 + t^5.41 + t^5.42 + t^5.49 + t^5.5 + t^5.76 + 3*t^5.84 + t^5.85 + 2*t^5.91 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 4*t^6. + t^6.01 + t^6.07 + t^6.08 + 2*t^6.16 + t^6.24 + t^6.32 + 2*t^6.43 + 2*t^6.51 + t^6.85 + t^6.86 + t^6.92 + 3*t^6.93 + 4*t^6.94 + t^6.95 + 5*t^7.01 + 3*t^7.02 + t^7.03 + 5*t^7.09 + t^7.1 + 4*t^7.17 + t^7.18 + t^7.35 + t^7.37 + 2*t^7.44 + 2*t^7.52 + 2*t^7.53 + t^7.59 + t^7.6 + 2*t^7.61 + 2*t^7.79 + 5*t^7.86 + 2*t^7.87 + 3*t^7.88 + 8*t^7.94 + 6*t^7.95 + 5*t^7.96 + 2*t^8.02 + 3*t^8.03 + 4*t^8.04 - 3*t^8.11 + t^8.18 + t^8.19 + t^8.26 + t^8.27 + t^8.29 + t^8.3 + t^8.34 + 3*t^8.37 + 4*t^8.38 + t^8.39 + t^8.42 - t^8.44 + t^8.45 + 3*t^8.46 + t^8.47 - t^8.52 - t^8.54 + t^8.64 + 2*t^8.72 + 2*t^8.73 + 2*t^8.79 + 2*t^8.8 + 3*t^8.81 + t^8.82 + 2*t^8.87 + t^8.88 + 6*t^8.89 + t^8.9 + t^8.91 + 2*t^8.95 - 4*t^8.96 - 4*t^8.97 + 2*t^8.98 - t^4.01/y - t^5.02/y - t^6.04/y - t^6.12/y - t^6.89/y - (2*t^6.97)/y - (2*t^6.98)/y - t^7.05/y + t^7.91/y + (2*t^7.99)/y + t^8.06/y + t^8.07/y + t^8.08/y - t^8.14/y - t^8.22/y + (3*t^8.84)/y + t^8.85/y + t^8.91/y + t^8.92/y + (3*t^8.93)/y - (2*t^8.99)/y - t^4.01*y - t^5.02*y - t^6.04*y - t^6.12*y - t^6.89*y - 2*t^6.97*y - 2*t^6.98*y - t^7.05*y + t^7.91*y + 2*t^7.99*y + t^8.06*y + t^8.07*y + t^8.08*y - t^8.14*y - t^8.22*y + 3*t^8.84*y + t^8.85*y + t^8.91*y + t^8.92*y + 3*t^8.93*y - 2*t^8.99*y | (g2^2*t^2.02)/g3^2 + t^2.11/(g1*g2*g3^5) + g1*g3^6*t^2.88 + 2*g1*g2^6*t^2.96 + (g3^3*t^2.96)/g2^3 + (g3^6*t^2.97)/(g1*g2^12) + (g1*g2^7*t^3.97)/g3 + (g3^5*t^3.98)/(g1*g2^11) + (g2^4*t^4.05)/g3^4 + t^4.06/(g1*g2^5*g3) + (g2*t^4.13)/(g1*g3^7) + t^4.21/(g1^2*g2^2*g3^10) + 2*g1*g2^2*g3^4*t^4.91 + (3*g1*g2^8*t^4.98)/g3^2 + (2*g3*t^4.99)/g2 + (2*g3^4*t^4.99)/(g1*g2^10) + (2*g2^5*t^5.06)/g3^5 + (2*t^5.07)/(g1*g2^4*g3^2) + (g3*t^5.08)/(g1^2*g2^13) + (g1*t^5.41)/(g2^11*g3) + g2^7*g3^11*t^5.42 + g2^13*g3^5*t^5.49 + t^5.5/(g1*g2^23*g3) + g1^2*g3^12*t^5.76 + 2*g1^2*g2^6*g3^6*t^5.84 + (g1*g3^9*t^5.84)/g2^3 + (g3^12*t^5.85)/g2^12 + 2*g1^2*g2^12*t^5.91 + 2*g1*g2^3*g3^3*t^5.92 + (2*g3^6*t^5.93)/g2^6 + (g3^9*t^5.93)/(g1*g2^15) + (g3^12*t^5.94)/(g1^2*g2^24) + (g1*g2^9*t^5.99)/g3^3 - 4*t^6. + (g3^3*t^6.01)/(g1*g2^9) + (g2^6*t^6.07)/g3^6 + t^6.08/(g1*g2^3*g3^3) + (g2^3*t^6.16)/(g1*g3^9) + t^6.16/(g1^2*g2^6*g3^6) + t^6.24/(g1^2*g3^12) + t^6.32/(g1^3*g2^3*g3^15) + (g1*t^6.43)/(g2^10*g3^2) + g2^8*g3^10*t^6.43 + t^6.51/(g1*g2^22*g3^2) + g2^14*g3^4*t^6.51 + g1^2*g2^7*g3^5*t^6.85 + (g3^11*t^6.86)/g2^11 + (g1^2*g2^13*t^6.92)/g3 + 3*g1*g2^4*g3^2*t^6.93 + (3*g3^5*t^6.94)/g2^5 + (g3^8*t^6.94)/(g1*g2^14) + (g3^11*t^6.95)/(g1^2*g2^23) + (3*g1*g2^10*t^7.01)/g3^4 + (2*g2*t^7.01)/g3 + (3*g3^2*t^7.02)/(g1*g2^8) + (g3^5*t^7.03)/(g1^2*g2^17) + (2*g2^7*t^7.09)/g3^7 + (3*t^7.09)/(g1*g2^2*g3^4) + t^7.1/(g1^2*g2^11*g3) + (2*g2^4*t^7.17)/(g1*g3^10) + (2*t^7.17)/(g1^2*g2^5*g3^7) + t^7.18/(g1^3*g2^14*g3^4) + (g1^3*g2^3*t^7.35)/g3^3 + g2^3*g3^15*t^7.37 - t^7.44/g2^18 + (2*g1*t^7.44)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.44 + 2*g2^9*g3^9*t^7.44 + 2*g2^15*g3^3*t^7.52 + (2*t^7.53)/(g1*g2^21*g3^3) + (g2^21*t^7.59)/g3^3 + (g2^12*t^7.6)/g1 + t^7.61/(g1^2*g2^24*g3^6) + t^7.61/(g1^3*g2^33*g3^3) + 2*g1^2*g2^2*g3^10*t^7.79 + 5*g1^2*g2^8*g3^4*t^7.86 + (2*g1*g3^7*t^7.87)/g2 + (3*g3^10*t^7.88)/g2^10 + (4*g1^2*g2^14*t^7.94)/g3^2 + 4*g1*g2^5*g3*t^7.94 + (6*g3^4*t^7.95)/g2^4 + (2*g3^7*t^7.96)/(g1*g2^13) + (3*g3^10*t^7.96)/(g1^2*g2^22) + (3*g1*g2^11*t^8.02)/g3^5 - (g2^2*t^8.02)/g3^2 + (3*g3*t^8.03)/(g1*g2^7) + (3*g3^4*t^8.04)/(g1^2*g2^16) + (g3^7*t^8.04)/(g1^3*g2^25) - (3*t^8.11)/(g1*g2*g3^5) + (g2^5*t^8.18)/(g1*g3^11) + t^8.19/(g1^2*g2^4*g3^8) + (g2^2*t^8.26)/(g1^2*g3^14) + t^8.27/(g1^3*g2^7*g3^11) + (g1^2*g3^5*t^8.29)/g2^11 + g1*g2^7*g3^17*t^8.3 + t^8.34/(g1^3*g2*g3^17) + (g1^2*t^8.37)/(g2^5*g3) + 2*g1*g2^13*g3^11*t^8.37 + (g1*g3^2*t^8.38)/g2^14 + (2*g3^5*t^8.38)/g2^23 + g2^4*g3^14*t^8.38 + (g3^17*t^8.39)/(g1*g2^5) + t^8.42/(g1^4*g2^4*g3^20) - (g1^2*g2*t^8.44)/g3^7 + (g1*t^8.45)/(g2^8*g3^4) + (g3^2*t^8.46)/(g1*g2^26) + 2*g2^10*g3^8*t^8.46 + (g3^5*t^8.47)/(g1^2*g2^35) - (g1*g2^25*t^8.52)/g3 - t^8.53/(g2^11*g3^7) + g2^16*g3^2*t^8.53 + t^8.54/(g1*g2^20*g3^4) - t^8.54/(g1^2*g2^29*g3) - (g2^7*g3^5*t^8.54)/g1 + g1^3*g3^18*t^8.64 + 2*g1^3*g2^6*g3^12*t^8.72 + (g1^2*g3^15*t^8.73)/g2^3 + (g1*g3^18*t^8.73)/g2^12 + 2*g1^3*g2^12*g3^6*t^8.79 + 2*g1^2*g2^3*g3^9*t^8.8 + (2*g1*g3^12*t^8.81)/g2^6 + (g3^15*t^8.81)/g2^15 + (g3^18*t^8.82)/(g1*g2^24) + 2*g1^3*g2^18*t^8.87 + 4*g1^2*g2^9*g3^3*t^8.88 - 3*g1*g3^6*t^8.88 + (4*g3^9*t^8.89)/g2^9 + (2*g3^12*t^8.89)/(g1*g2^18) + (g3^15*t^8.9)/(g1^2*g2^27) + (g3^18*t^8.91)/(g1^3*g2^36) + (2*g1^2*g2^15*t^8.95)/g3^3 - 5*g1*g2^6*t^8.96 + (g3^3*t^8.96)/g2^3 - (4*g3^6*t^8.97)/(g1*g2^12) + (2*g3^9*t^8.98)/(g1^2*g2^21) - (g2*t^4.01)/(g3*y) - (g2^2*t^5.02)/(g3^2*y) - (g2^3*t^6.04)/(g3^3*y) - t^6.12/(g1*g3^6*y) - (g1*g2*g3^5*t^6.89)/y - (2*g1*g2^7*t^6.97)/(g3*y) - (g3^2*t^6.98)/(g2^2*y) - (g3^5*t^6.98)/(g1*g2^11*y) - (g2^4*t^7.05)/(g3^4*y) + (g1*g2^2*g3^4*t^7.91)/y + (2*g3*t^7.99)/(g2*y) + (g2^5*t^8.06)/(g3^5*y) + t^8.07/(g1*g2^4*g3^2*y) + (g3*t^8.08)/(g1^2*g2^13*y) - (g2^2*t^8.14)/(g1*g3^8*y) - t^8.22/(g1^2*g2*g3^11*y) + (2*g1^2*g2^6*g3^6*t^8.84)/y + (g1*g3^9*t^8.84)/(g2^3*y) + (g3^12*t^8.85)/(g2^12*y) + (g1^2*g2^12*t^8.91)/y + (g1*g2^3*g3^3*t^8.92)/y + (2*g3^6*t^8.93)/(g2^6*y) + (g3^9*t^8.93)/(g1*g2^15*y) - (2*g1*g2^9*t^8.99)/(g3^3*y) - (g2*t^4.01*y)/g3 - (g2^2*t^5.02*y)/g3^2 - (g2^3*t^6.04*y)/g3^3 - (t^6.12*y)/(g1*g3^6) - g1*g2*g3^5*t^6.89*y - (2*g1*g2^7*t^6.97*y)/g3 - (g3^2*t^6.98*y)/g2^2 - (g3^5*t^6.98*y)/(g1*g2^11) - (g2^4*t^7.05*y)/g3^4 + g1*g2^2*g3^4*t^7.91*y + (2*g3*t^7.99*y)/g2 + (g2^5*t^8.06*y)/g3^5 + (t^8.07*y)/(g1*g2^4*g3^2) + (g3*t^8.08*y)/(g1^2*g2^13) - (g2^2*t^8.14*y)/(g1*g3^8) - (t^8.22*y)/(g1^2*g2*g3^11) + 2*g1^2*g2^6*g3^6*t^8.84*y + (g1*g3^9*t^8.84*y)/g2^3 + (g3^12*t^8.85*y)/g2^12 + g1^2*g2^12*t^8.91*y + g1*g2^3*g3^3*t^8.92*y + (2*g3^6*t^8.93*y)/g2^6 + (g3^9*t^8.93*y)/(g1*g2^15) - (2*g1*g2^9*t^8.99*y)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57492 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6897 | 0.8735 | [X:[], M:[0.984, 0.9818], q:[0.5102, 0.4739], qb:[0.508, 0.476], phi:[0.3387]] | t^2.03 + t^2.85 + 3*t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^3.97 + t^4.06 + t^4.07 + 2*t^4.88 + 4*t^4.98 + 2*t^4.99 + t^5.09 + t^5.39 + t^5.4 + t^5.49 + t^5.5 + t^5.7 + 3*t^5.8 + t^5.81 + 2*t^5.89 + 5*t^5.9 + t^5.91 + t^5.92 + t^5.99 - 4*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y | detail |