Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57468 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4569 1.6464 0.8849 [X:[1.3428], M:[0.9491, 0.9491, 1.0141], q:[0.5064, 0.5064], qb:[0.5445, 0.471], phi:[0.3286]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, -1, 0, 0], [0, 0, 0, 3]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}$ -6 2*t^2.85 + 2*t^2.93 + t^3.04 + 2*t^3.92 + t^4.03 + 2*t^4.14 + 2*t^4.9 + 2*t^5.12 + t^5.45 + 2*t^5.54 + t^5.67 + 3*t^5.69 + 3*t^5.78 + 3*t^5.86 + 2*t^5.89 + 2*t^5.97 - 6*t^6. + t^6.08 - t^6.22 + t^6.43 + 2*t^6.53 + t^6.65 + 3*t^6.77 + 4*t^6.85 + 2*t^6.88 + 4*t^6.96 - t^6.99 + 5*t^7.07 + 2*t^7.18 + t^7.2 - t^7.21 - t^7.4 + t^7.42 + 4*t^7.52 - 2*t^7.53 - t^7.63 + t^7.64 + 3*t^7.75 + 7*t^7.84 + t^7.86 + 2*t^7.95 + 8*t^8.06 + 2*t^8.17 - t^8.19 + 3*t^8.28 + 2*t^8.38 + 4*t^8.48 + t^8.49 - 2*t^8.51 + 4*t^8.54 + 2*t^8.59 + 2*t^8.6 - 4*t^8.61 + 4*t^8.63 + 5*t^8.71 - 2*t^8.73 + 3*t^8.74 + 4*t^8.8 + 7*t^8.82 - 10*t^8.85 + 3*t^8.91 - 10*t^8.93 + t^8.96 + t^8.96/y^2 - t^3.99/y - t^4.97/y - (2*t^6.83)/y - (2*t^6.92)/y - t^7.03/y - (2*t^7.82)/y - (2*t^7.9)/y - t^8.01/y + t^8.69/y + (4*t^8.78)/y + t^8.86/y + (2*t^8.97)/y - t^3.99*y - t^4.97*y - 2*t^6.83*y - 2*t^6.92*y - t^7.03*y - 2*t^7.82*y - 2*t^7.9*y - t^8.01*y + t^8.69*y + 4*t^8.78*y + t^8.86*y + 2*t^8.97*y + t^8.96*y^2 t^2.85/(g1*g2) + (g1*g3*t^2.85)/g4^6 + g1*g3*t^2.93 + (g4^6*t^2.93)/(g1*g2) + g4^3*t^3.04 + (g1*g3*t^3.92)/g4 + (g4^5*t^3.92)/(g1*g2) + g4^2*t^4.03 + (g1*g2*t^4.14)/g4 + (g4^5*t^4.14)/(g1*g3) + (g1*g3*t^4.9)/g4^2 + (g4^4*t^4.9)/(g1*g2) + (g1*g2*t^5.12)/g4^2 + (g4^4*t^5.12)/(g1*g3) + (g2*g3^2*t^5.45)/g4 + (g1*g4^5*t^5.54)/(g2*g3) + (g4^11*t^5.54)/(g1*g2^2*g3^2) + (g2^2*g3*t^5.67)/g4 + t^5.69/(g1^2*g2^2) + (g1^2*g3^2*t^5.69)/g4^12 + (g3*t^5.69)/(g2*g4^6) + (g3*t^5.78)/g2 + (g1^2*g3^2*t^5.78)/g4^6 + (g4^6*t^5.78)/(g1^2*g2^2) + g1^2*g3^2*t^5.86 + (g3*g4^6*t^5.86)/g2 + (g4^12*t^5.86)/(g1^2*g2^2) + (g1*g3*t^5.89)/g4^3 + (g4^3*t^5.89)/(g1*g2) + g1*g3*g4^3*t^5.97 + (g4^9*t^5.97)/(g1*g2) - 4*t^6. - (g1^2*g2*g3*t^6.)/g4^6 - (g4^6*t^6.)/(g1^2*g2*g3) + g4^6*t^6.08 - (g2*t^6.22)/g3 + (g2*g3^2*t^6.43)/g4^2 + (g1*g4^4*t^6.53)/(g2*g3) + (g4^10*t^6.53)/(g1*g2^2*g3^2) + (g2^2*g3*t^6.65)/g4^2 + (g1^2*g3^2*t^6.77)/g4^7 + (g3*t^6.77)/(g2*g4) + (g4^5*t^6.77)/(g1^2*g2^2) + (g1^2*g3^2*t^6.85)/g4 + (2*g3*g4^5*t^6.85)/g2 + (g4^11*t^6.85)/(g1^2*g2^2) + (g1*g3*t^6.88)/g4^4 + (g4^2*t^6.88)/(g1*g2) + 2*g1*g3*g4^2*t^6.96 + (2*g4^8*t^6.96)/(g1*g2) - t^6.99/g4 + (g1^2*g2*g3*t^7.07)/g4 + 3*g4^5*t^7.07 + (g4^11*t^7.07)/(g1^2*g2*g3) + g1*g2*g4^2*t^7.18 + (g4^8*t^7.18)/(g1*g3) + (g3^3*t^7.2)/g4^3 - (g2*t^7.21)/(g3*g4) - (g4^6*t^7.4)/(g2^2*g3) + (g2*g3^2*t^7.42)/g4^3 + (g1^3*t^7.52)/g4^3 + (g1*g4^3*t^7.52)/(g2*g3) + (g4^9*t^7.52)/(g1*g2^2*g3^2) + (g4^15*t^7.52)/(g1^3*g2^3*g3^3) - (g2*g3*t^7.53)/g1 - (g1*g2^2*g3^2*t^7.53)/g4^6 - (g4^6*t^7.63)/(g2*g3^2) + (g2^2*g3*t^7.64)/g4^3 + (g1^2*g3^2*t^7.75)/g4^8 + (g3*t^7.75)/(g2*g4^2) + (g4^4*t^7.75)/(g1^2*g2^2) + (2*g1^2*g3^2*t^7.84)/g4^2 + (3*g3*g4^4*t^7.84)/g2 + (2*g4^10*t^7.84)/(g1^2*g2^2) + (g2^3*t^7.86)/g4^3 + g1*g3*g4*t^7.95 + (g4^7*t^7.95)/(g1*g2) + (2*g1^2*g2*g3*t^8.06)/g4^2 + 4*g4^4*t^8.06 + (2*g4^10*t^8.06)/(g1^2*g2*g3) + g1*g2*g4*t^8.17 + (g4^7*t^8.17)/(g1*g3) - (g2*t^8.19)/(g3*g4^2) + (g1^2*g2^2*t^8.28)/g4^2 + (g2*g4^4*t^8.28)/g3 + (g4^10*t^8.28)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.38)/g4 + (g3^2*g4^5*t^8.38)/g1 + (g1^2*g4^5*t^8.48)/g2 + (2*g4^11*t^8.48)/(g2^2*g3) + (g4^17*t^8.48)/(g1^2*g2^3*g3^2) + g2*g3^2*g4^2*t^8.49 - (g1*g2^2*g3^2*t^8.51)/g4^7 - (g2*g3*t^8.51)/(g1*g4) + t^8.54/(g1^3*g2^3) + (g1^3*g3^3*t^8.54)/g4^18 + (g1*g3^2*t^8.54)/(g2*g4^12) + (g3*t^8.54)/(g1*g2^2*g4^6) + (g1*g4^8*t^8.59)/(g2*g3) + (g4^14*t^8.59)/(g1*g2^2*g3^2) + (g1*g2^2*g3^2*t^8.6)/g4 + (g2*g3*g4^5*t^8.6)/g1 - (g1^2*t^8.61)/(g3*g4) - (2*g4^5*t^8.61)/(g2*g3^2) - (g4^11*t^8.61)/(g1^2*g2^2*g3^3) + (g3*t^8.63)/(g1*g2^2) + (g1^3*g3^3*t^8.63)/g4^12 + (g1*g3^2*t^8.63)/(g2*g4^6) + (g4^6*t^8.63)/(g1^3*g2^3) + (g1*g3^2*t^8.71)/g2 + (g1^3*g3^3*t^8.71)/g4^6 + g2^2*g3*g4^2*t^8.71 + (g3*g4^6*t^8.71)/(g1*g2^2) + (g4^12*t^8.71)/(g1^3*g2^3) - (g1*g2^3*g3*t^8.73)/g4^7 - (g2^2*t^8.73)/(g1*g4) + (g1^2*g3^2*t^8.74)/g4^9 + (g3*t^8.74)/(g2*g4^3) + (g4^3*t^8.74)/(g1^2*g2^2) + g1^3*g3^3*t^8.8 + (g1*g3^2*g4^6*t^8.8)/g2 + (g3*g4^12*t^8.8)/(g1*g2^2) + (g4^18*t^8.8)/(g1^3*g2^3) + (2*g1^2*g3^2*t^8.82)/g4^3 + (3*g3*g4^3*t^8.82)/g2 + (2*g4^9*t^8.82)/(g1^2*g2^2) - (4*t^8.85)/(g1*g2) - (g1^3*g2*g3^2*t^8.85)/g4^12 - (4*g1*g3*t^8.85)/g4^6 - (g4^6*t^8.85)/(g1^3*g2^2*g3) + g1^2*g3^2*g4^3*t^8.91 + (g3*g4^9*t^8.91)/g2 + (g4^15*t^8.91)/(g1^2*g2^2) - 4*g1*g3*t^8.93 - (g1^3*g2*g3^2*t^8.93)/g4^6 - (4*g4^6*t^8.93)/(g1*g2) - (g4^12*t^8.93)/(g1^3*g2^2*g3) + t^8.96/g4^3 + t^8.96/(g4^3*y^2) - t^3.99/(g4*y) - t^4.97/(g4^2*y) - (g1*g3*t^6.83)/(g4^7*y) - t^6.83/(g1*g2*g4*y) - (g1*g3*t^6.92)/(g4*y) - (g4^5*t^6.92)/(g1*g2*y) - (g4^2*t^7.03)/y - (g1*g3*t^7.82)/(g4^8*y) - t^7.82/(g1*g2*g4^2*y) - (g1*g3*t^7.9)/(g4^2*y) - (g4^4*t^7.9)/(g1*g2*y) - (g4*t^8.01)/y + (g3*t^8.69)/(g2*g4^6*y) + (2*g3*t^8.78)/(g2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g4^6*t^8.78)/(g1^2*g2^2*y) + (g3*g4^6*t^8.86)/(g2*y) + (g1*g3*g4^3*t^8.97)/y + (g4^9*t^8.97)/(g1*g2*y) - (t^3.99*y)/g4 - (t^4.97*y)/g4^2 - (g1*g3*t^6.83*y)/g4^7 - (t^6.83*y)/(g1*g2*g4) - (g1*g3*t^6.92*y)/g4 - (g4^5*t^6.92*y)/(g1*g2) - g4^2*t^7.03*y - (g1*g3*t^7.82*y)/g4^8 - (t^7.82*y)/(g1*g2*g4^2) - (g1*g3*t^7.9*y)/g4^2 - (g4^4*t^7.9*y)/(g1*g2) - g4*t^8.01*y + (g3*t^8.69*y)/(g2*g4^6) + (2*g3*t^8.78*y)/g2 + (g1^2*g3^2*t^8.78*y)/g4^6 + (g4^6*t^8.78*y)/(g1^2*g2^2) + (g3*g4^6*t^8.86*y)/g2 + g1*g3*g4^3*t^8.97*y + (g4^9*t^8.97*y)/(g1*g2) + (t^8.96*y^2)/g4^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58961 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ 1.0957 1.1976 0.9149 [X:[1.5368], M:[1.1579, 0.6847, 1.3052], q:[0.4193, 0.8926], qb:[0.4227, 0.8758], phi:[0.2316]] t^2.05 + t^3.22 + t^3.47 + t^3.89 + 2*t^3.92 + t^4.11 + t^4.61 + t^5.27 + t^5.31 + t^5.53 + 2*t^5.86 + 2*t^5.89 + t^5.94 + t^5.97 - 3*t^6. - t^3.69/y - t^4.39/y - t^5.75/y - t^3.69*y - t^4.39*y - t^5.75*y detail
59107 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4565 1.6433 0.8863 [X:[1.3493], M:[0.9522, 0.9394, 1.0239], q:[0.5051, 0.5179], qb:[0.5427, 0.4821], phi:[0.3254]] t^2.82 + t^2.86 + t^2.96 + t^3. + t^3.07 + t^3.94 + t^3.98 + t^4.05 + t^4.12 + t^4.16 + t^4.91 + t^4.95 + t^5.1 + t^5.13 + t^5.5 + t^5.56 + t^5.6 + t^5.64 + t^5.67 + t^5.68 + t^5.71 + t^5.78 + t^5.82 + t^5.86 + t^5.89 + t^5.92 + t^5.93 - 3*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47913 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4595 1.6464 0.8865 [X:[1.3609], M:[0.922, 0.922], q:[0.52, 0.52], qb:[0.558, 0.4848], phi:[0.3195]] 2*t^2.766 + t^2.876 + 2*t^3.015 + 2*t^3.973 + t^4.083 + 2*t^4.193 + 2*t^4.932 + 2*t^5.151 + 3*t^5.532 + t^5.542 + 2*t^5.639 + 2*t^5.642 + t^5.751 + t^5.761 + 3*t^5.781 + 2*t^5.89 - 6*t^6. - t^3.959/y - t^4.917/y - t^3.959*y - t^4.917*y detail