Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59107 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4565 1.6433 0.8863 [X:[1.3493], M:[0.9522, 0.9394, 1.0239], q:[0.5051, 0.5179], qb:[0.5427, 0.4821], phi:[0.3254]] [X:[[0, 0, 2]], M:[[0, 0, -6], [-1, 1, 0], [0, 0, 3]], q:[[-1, 0, 6], [0, -1, 0]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$ ${}$ -3 t^2.82 + t^2.86 + t^2.96 + t^3. + t^3.07 + t^3.94 + t^3.98 + t^4.05 + t^4.12 + t^4.16 + t^4.91 + t^4.95 + t^5.1 + t^5.13 + t^5.5 + t^5.56 + t^5.6 + t^5.64 + t^5.67 + t^5.68 + t^5.71 + t^5.78 + t^5.82 + t^5.86 + t^5.89 + t^5.92 + t^5.93 - 3*t^6. + t^6.03 - t^6.04 + t^6.07 + t^6.14 - t^6.18 + t^6.47 + t^6.54 + t^6.57 + t^6.65 + t^6.76 + t^6.79 + t^6.83 + t^6.87 + 2*t^6.9 + 2*t^6.94 + 2*t^7.01 + 2*t^7.05 + t^7.08 + 3*t^7.12 + t^7.19 + t^7.23 + t^7.27 - t^7.44 + t^7.45 + t^7.47 + t^7.51 - t^7.52 + t^7.55 - t^7.56 + t^7.59 - t^7.62 + t^7.63 + t^7.73 + t^7.77 + 2*t^7.81 + 2*t^7.88 + 3*t^7.91 + 2*t^7.95 + t^7.99 + t^8.02 + 2*t^8.06 + 4*t^8.1 + t^8.13 + t^8.17 + t^8.21 + t^8.24 + t^8.28 + t^8.32 + t^8.45 + t^8.46 + t^8.49 + t^8.52 + t^8.53 - t^8.54 + t^8.56 + 2*t^8.57 + t^8.63 + t^8.64 + 2*t^8.67 + 2*t^8.71 - t^8.72 + t^8.74 + 2*t^8.75 + t^8.79 - 3*t^8.82 + 2*t^8.85 - 3*t^8.86 + t^8.88 + 3*t^8.89 - t^8.9 + 3*t^8.93 - 3*t^8.96 + t^8.99 + t^8.93/y^2 - t^3.98/y - t^4.95/y - t^6.79/y - t^6.83/y - t^6.94/y - t^6.98/y - t^7.05/y - t^7.77/y - t^7.81/y - t^7.91/y - t^7.95/y - t^8.02/y + t^8.67/y + t^8.78/y + (2*t^8.82)/y + t^8.86/y + t^8.96/y - t^3.98*y - t^4.95*y - t^6.79*y - t^6.83*y - t^6.94*y - t^6.98*y - t^7.05*y - t^7.77*y - t^7.81*y - t^7.91*y - t^7.95*y - t^8.02*y + t^8.67*y + t^8.78*y + 2*t^8.82*y + t^8.86*y + t^8.96*y + t^8.93*y^2 (g2*t^2.82)/g1 + t^2.86/g3^6 + (g2*g3^6*t^2.96)/g1 + t^3. + g3^3*t^3.07 + (g2*g3^5*t^3.94)/g1 + t^3.98/g3 + g3^2*t^4.05 + g3^5*t^4.12 + (g1*t^4.16)/(g2*g3) + (g2*g3^4*t^4.91)/g1 + t^4.95/g3^2 + g3^4*t^5.1 + (g1*t^5.13)/(g2*g3^2) + (g1*g2^2*t^5.5)/g3 + (g3^11*t^5.56)/(g1^2*g2) + (g3^5*t^5.6)/(g1*g2^2) + (g2^2*t^5.64)/g1^2 + (g2*t^5.67)/(g1*g3^6) + (g1^2*g2*t^5.68)/g3 + t^5.71/g3^12 + (g2^2*g3^6*t^5.78)/g1^2 + (g2*t^5.82)/g1 + t^5.86/g3^6 + (g2*g3^3*t^5.89)/g1 + (g2^2*g3^12*t^5.92)/g1^2 + t^5.93/g3^3 - 3*t^6. + (g2*g3^9*t^6.03)/g1 - (g1*t^6.04)/(g2*g3^6) + g3^3*t^6.07 + g3^6*t^6.14 - (g1*t^6.18)/g2 + (g1*g2^2*t^6.47)/g3^2 + (g3^10*t^6.54)/(g1^2*g2) + (g3^4*t^6.57)/(g1*g2^2) + (g1^2*g2*t^6.65)/g3^2 + (g2^2*g3^5*t^6.76)/g1^2 + (g2*t^6.79)/(g1*g3) + t^6.83/g3^7 + (g2*g3^2*t^6.87)/g1 + t^6.9/g3^4 + (g2^2*g3^11*t^6.9)/g1^2 + (2*g2*g3^5*t^6.94)/g1 + (2*g2*g3^8*t^7.01)/g1 + 2*g3^2*t^7.05 + (g2*g3^11*t^7.08)/g1 + 3*g3^5*t^7.12 + g3^8*t^7.19 + (g1*g3^2*t^7.23)/g2 + (g2^3*t^7.27)/g3^3 - (g3^6*t^7.44)/(g1^2*g2) + (g1*g2^2*t^7.45)/g3^3 + (g3^15*t^7.47)/g1^3 + (g3^9*t^7.51)/(g1^2*g2) - g1*g2^2*t^7.52 + (g3^3*t^7.55)/(g1*g2^2) - (g1^2*g2*t^7.56)/g3^6 + t^7.59/(g2^3*g3^3) - (g3^6*t^7.62)/(g1*g2^2) + (g1^2*g2*t^7.63)/g3^3 + (g2^2*g3^4*t^7.73)/g1^2 + (g2*t^7.77)/(g1*g3^2) + t^7.81/g3^8 + (g1^3*t^7.81)/g3^3 + (2*g2^2*g3^10*t^7.88)/g1^2 + (3*g2*g3^4*t^7.91)/g1 + (2*t^7.95)/g3^2 + (g2*g3^7*t^7.99)/g1 + g3*t^8.02 + (2*g2*g3^10*t^8.06)/g1 + 4*g3^4*t^8.1 + (g1*t^8.13)/(g2*g3^2) + g3^7*t^8.17 + (g1*g3*t^8.21)/g2 + g3^10*t^8.24 + (g1*g3^4*t^8.28)/g2 + (g1^2*t^8.32)/(g2^2*g3^2) + (g2^3*t^8.45)/g1^3 + g2^3*g3^5*t^8.46 + (g2^2*t^8.49)/(g1^2*g3^6) + (g3^17*t^8.52)/g1^3 + (g2*t^8.53)/(g1*g3^12) - (g1^2*g2*t^8.54)/g3^7 + (g3^11*t^8.56)/(g1^2*g2) + t^8.57/g3^18 + g1*g2^2*g3^2*t^8.57 - (g3^5*t^8.6)/(g1*g2^2) + (g2^3*g3^6*t^8.6)/g1^3 + (g3^14*t^8.63)/(g1^2*g2) + (g2^2*t^8.64)/g1^2 - t^8.64/(g2^3*g3) + g1*g2^2*g3^5*t^8.64 + (g2*t^8.67)/(g1*g3^6) + (g3^8*t^8.67)/(g1*g2^2) + t^8.71/g3^12 + (g2^2*g3^3*t^8.71)/g1^2 - (g1^3*t^8.72)/g3^7 + (g2^3*g3^12*t^8.74)/g1^3 + (g2*t^8.75)/(g1*g3^3) + g1^2*g2*g3^2*t^8.75 + t^8.79/g3^9 - (3*g2*t^8.82)/g1 + (2*g2^2*g3^9*t^8.85)/g1^2 - (3*t^8.86)/g3^6 + (g2^3*g3^18*t^8.88)/g1^3 + (3*g2*g3^3*t^8.89)/g1 - (g1*t^8.9)/(g2*g3^12) + (3*t^8.93)/g3^3 - (3*g2*g3^6*t^8.96)/g1 + (g2^2*g3^15*t^8.99)/g1^2 + t^8.93/(g3^3*y^2) - t^3.98/(g3*y) - t^4.95/(g3^2*y) - (g2*t^6.79)/(g1*g3*y) - t^6.83/(g3^7*y) - (g2*g3^5*t^6.94)/(g1*y) - t^6.98/(g3*y) - (g3^2*t^7.05)/y - (g2*t^7.77)/(g1*g3^2*y) - t^7.81/(g3^8*y) - (g2*g3^4*t^7.91)/(g1*y) - t^7.95/(g3^2*y) - (g3*t^8.02)/y + (g2*t^8.67)/(g1*g3^6*y) + (g2^2*g3^6*t^8.78)/(g1^2*y) + (2*g2*t^8.82)/(g1*y) + t^8.86/(g3^6*y) + (g2*g3^6*t^8.96)/(g1*y) - (t^3.98*y)/g3 - (t^4.95*y)/g3^2 - (g2*t^6.79*y)/(g1*g3) - (t^6.83*y)/g3^7 - (g2*g3^5*t^6.94*y)/g1 - (t^6.98*y)/g3 - g3^2*t^7.05*y - (g2*t^7.77*y)/(g1*g3^2) - (t^7.81*y)/g3^8 - (g2*g3^4*t^7.91*y)/g1 - (t^7.95*y)/g3^2 - g3*t^8.02*y + (g2*t^8.67*y)/(g1*g3^6) + (g2^2*g3^6*t^8.78*y)/g1^2 + (2*g2*t^8.82*y)/g1 + (t^8.86*y)/g3^6 + (g2*g3^6*t^8.96*y)/g1 + (t^8.93*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57468 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4569 1.6464 0.8849 [X:[1.3428], M:[0.9491, 0.9491, 1.0141], q:[0.5064, 0.5064], qb:[0.5445, 0.471], phi:[0.3286]] 2*t^2.85 + 2*t^2.93 + t^3.04 + 2*t^3.92 + t^4.03 + 2*t^4.14 + 2*t^4.9 + 2*t^5.12 + t^5.45 + 2*t^5.54 + t^5.67 + 3*t^5.69 + 3*t^5.78 + 3*t^5.86 + 2*t^5.89 + 2*t^5.97 - 6*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail