Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57454 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3414 1.6039 0.8363 [M:[0.8], q:[0.5888, 0.4225], qb:[0.2944, 0.2944], phi:[0.4]] [M:[[0, 0]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 6 2*t^2.151 + 2*t^2.4 + 2*t^2.649 + 2*t^3.351 + 4*t^3.849 + 3*t^4.301 + 6*t^4.551 + 7*t^4.8 + 8*t^5.049 + 3*t^5.299 + 4*t^5.501 + 4*t^5.751 + 6*t^6. + 12*t^6.249 + 4*t^6.452 + 6*t^6.499 + 13*t^6.701 + 14*t^6.951 + 22*t^7.2 + t^7.402 + 16*t^7.449 + 6*t^7.652 + 18*t^7.699 + 12*t^7.901 + 4*t^7.948 + 10*t^8.151 + 24*t^8.4 + 5*t^8.602 + 18*t^8.649 + 18*t^8.852 + 28*t^8.899 - t^4.2/y - t^5.4/y - (2*t^6.351)/y - (2*t^6.6)/y - (2*t^6.849)/y + t^7.301/y + (2*t^7.551)/y + (4*t^7.8)/y + (2*t^8.049)/y + t^8.299/y + t^8.501/y - (2*t^8.751)/y - t^4.2*y - t^5.4*y - 2*t^6.351*y - 2*t^6.6*y - 2*t^6.849*y + t^7.301*y + 2*t^7.551*y + 4*t^7.8*y + 2*t^8.049*y + t^8.299*y + t^8.501*y - 2*t^8.751*y t^2.151/(g1*g2^2) + t^2.151/(g1^2*g2) + 2*t^2.4 + g1^2*g2*t^2.649 + g1*g2^2*t^2.649 + t^3.351/(g1*g2^2) + t^3.351/(g1^2*g2) + 2*g1^2*g2*t^3.849 + 2*g1*g2^2*t^3.849 + t^4.301/(g1^2*g2^4) + t^4.301/(g1^3*g2^3) + t^4.301/(g1^4*g2^2) + (3*t^4.551)/(g1*g2^2) + (3*t^4.551)/(g1^2*g2) + 5*t^4.8 + (g1*t^4.8)/g2 + (g2*t^4.8)/g1 + 4*g1^2*g2*t^5.049 + 4*g1*g2^2*t^5.049 + g1^4*g2^2*t^5.299 + g1^3*g2^3*t^5.299 + g1^2*g2^4*t^5.299 + t^5.501/(g1^2*g2^4) + (2*t^5.501)/(g1^3*g2^3) + t^5.501/(g1^4*g2^2) + (2*t^5.751)/(g1*g2^2) + (2*t^5.751)/(g1^2*g2) + 2*t^6. + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + g1^3*t^6.249 + 5*g1^2*g2*t^6.249 + 5*g1*g2^2*t^6.249 + g2^3*t^6.249 + t^6.452/(g1^3*g2^6) + t^6.452/(g1^4*g2^5) + t^6.452/(g1^5*g2^4) + t^6.452/(g1^6*g2^3) + 2*g1^4*g2^2*t^6.499 + 2*g1^3*g2^3*t^6.499 + 2*g1^2*g2^4*t^6.499 + (4*t^6.701)/(g1^2*g2^4) + (5*t^6.701)/(g1^3*g2^3) + (4*t^6.701)/(g1^4*g2^2) + t^6.951/g1^3 + t^6.951/g2^3 + (6*t^6.951)/(g1*g2^2) + (6*t^6.951)/(g1^2*g2) + 12*t^7.2 + (5*g1*t^7.2)/g2 + (5*g2*t^7.2)/g1 + t^7.402/(g1^6*g2^6) + g1^3*t^7.449 + 7*g1^2*g2*t^7.449 + 7*g1*g2^2*t^7.449 + g2^3*t^7.449 + t^7.652/(g1^3*g2^6) + (2*t^7.652)/(g1^4*g2^5) + (2*t^7.652)/(g1^5*g2^4) + t^7.652/(g1^6*g2^3) + 6*g1^4*g2^2*t^7.699 + 6*g1^3*g2^3*t^7.699 + 6*g1^2*g2^4*t^7.699 + (3*t^7.901)/(g1^2*g2^4) + (6*t^7.901)/(g1^3*g2^3) + (3*t^7.901)/(g1^4*g2^2) + g1^6*g2^3*t^7.948 + g1^5*g2^4*t^7.948 + g1^4*g2^5*t^7.948 + g1^3*g2^6*t^7.948 + (2*t^8.151)/g1^3 + (2*t^8.151)/g2^3 + (3*t^8.151)/(g1*g2^2) + (3*t^8.151)/(g1^2*g2) + 8*t^8.4 + (g1^2*t^8.4)/g2^2 + (7*g1*t^8.4)/g2 + (7*g2*t^8.4)/g1 + (g2^2*t^8.4)/g1^2 + t^8.602/(g1^4*g2^8) + t^8.602/(g1^5*g2^7) + t^8.602/(g1^6*g2^6) + t^8.602/(g1^7*g2^5) + t^8.602/(g1^8*g2^4) + 3*g1^3*t^8.649 + 6*g1^2*g2*t^8.649 + 6*g1*g2^2*t^8.649 + 3*g2^3*t^8.649 + (4*t^8.852)/(g1^3*g2^6) + (5*t^8.852)/(g1^4*g2^5) + (5*t^8.852)/(g1^5*g2^4) + (4*t^8.852)/(g1^6*g2^3) + g1^5*g2*t^8.899 + 8*g1^4*g2^2*t^8.899 + 10*g1^3*g2^3*t^8.899 + 8*g1^2*g2^4*t^8.899 + g1*g2^5*t^8.899 - t^4.2/y - t^5.4/y - t^6.351/(g1*g2^2*y) - t^6.351/(g1^2*g2*y) - (2*t^6.6)/y - (g1^2*g2*t^6.849)/y - (g1*g2^2*t^6.849)/y + t^7.301/(g1^3*g2^3*y) + t^7.551/(g1*g2^2*y) + t^7.551/(g1^2*g2*y) + (2*t^7.8)/y + (g1*t^7.8)/(g2*y) + (g2*t^7.8)/(g1*y) + (g1^2*g2*t^8.049)/y + (g1*g2^2*t^8.049)/y + (g1^3*g2^3*t^8.299)/y + t^8.501/(g1^3*g2^3*y) - t^8.751/(g1*g2^2*y) - t^8.751/(g1^2*g2*y) - t^4.2*y - t^5.4*y - (t^6.351*y)/(g1*g2^2) - (t^6.351*y)/(g1^2*g2) - 2*t^6.6*y - g1^2*g2*t^6.849*y - g1*g2^2*t^6.849*y + (t^7.301*y)/(g1^3*g2^3) + (t^7.551*y)/(g1*g2^2) + (t^7.551*y)/(g1^2*g2) + 2*t^7.8*y + (g1*t^7.8*y)/g2 + (g2*t^7.8*y)/g1 + g1^2*g2*t^8.049*y + g1*g2^2*t^8.049*y + g1^3*g2^3*t^8.299*y + (t^8.501*y)/(g1^3*g2^3) - (t^8.751*y)/(g1*g2^2) - (t^8.751*y)/(g1^2*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58793 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.3214 1.5667 0.8434 [X:[], M:[0.8, 1.2745], q:[0.5858, 0.4283], qb:[0.2971, 0.2887], phi:[0.4]] t^2.15 + 2*t^2.4 + t^2.62 + t^2.65 + t^3.35 + t^3.38 + 3*t^3.82 + 2*t^3.85 + t^4.3 + 3*t^4.55 + t^4.58 + t^4.77 + 4*t^4.8 + 4*t^5.02 + 4*t^5.05 + t^5.25 + t^5.27 + t^5.3 + t^5.5 + t^5.53 + 2*t^5.75 + 2*t^5.78 + 3*t^5.97 - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
59492 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.3185 1.581 0.834 [X:[], M:[0.8], q:[0.5333, 0.5333], qb:[0.2667, 0.2667], phi:[0.4]] 6*t^2.4 + 6*t^3.6 + 27*t^4.8 + 32*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 2637/2000, c: 1581/1000, M1: 4/5, q1: 8/15, q2: 8/15, qb1: 4/15, qb2: 4/15, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47908 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4265 1.689 0.8446 [M:[0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 6*t^2.4 + 4*t^3.6 + 29*t^4.8 + 20*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 2853/2000, c: 1689/1000, M1: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}