Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47908 | SU3adj1nf2 | $\phi_1^5$ + $ M_1\phi_1^3$ | 1.4265 | 1.689 | 0.8446 | [X:[], M:[0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | [X:[], M:[[0, 0, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] | 3 | {a: 2853/2000, c: 1689/1000, M1: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ M_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_1q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$, $ M_1q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ q_1^2\tilde{q}_1^2$, $ \phi_1q_1^2q_2$, $ M_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2^2$, $ q_1q_2\tilde{q}_1^2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$ | $\phi_1^2q_1^2q_2$, $ \phi_1^2q_1q_2^2$, $ M_1\phi_1q_1\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_1$, $ M_1\phi_1q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1q_1^2\tilde{q}_1^2$, $ 2\phi_1q_1q_2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ M_1\phi_1q_1\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$, $ M_1\phi_1q_2\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$, $ 2\phi_1q_1^2\tilde{q}_1\tilde{q}_2$, $ 4\phi_1q_1q_2\tilde{q}_1\tilde{q}_2$, $ 2\phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1^2\tilde{q}_2^2$, $ 2\phi_1q_1q_2\tilde{q}_2^2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2^2$ | 20 | 6*t^2.4 + 4*t^3.6 + 29*t^4.8 + 20*t^6. + 106*t^7.2 + 57*t^8.4 - t^4.2/y - t^5.4/y - (6*t^6.6)/y + (10*t^7.8)/y - t^4.2*y - t^5.4*y - 6*t^6.6*y + 10*t^7.8*y | 2*t^2.4 + t^2.4/(g1*g2) + g1*g2*t^2.4 + t^2.4/(g1*g3) + g1*g3*t^2.4 + t^3.6/(g1*g2) + g1*g2*t^3.6 + t^3.6/(g1*g3) + g1*g3*t^3.6 + 5*t^4.8 + t^4.8/(g1^2*g2^2) + (3*t^4.8)/(g1*g2) + 3*g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + t^4.8/(g1^2*g3^2) + t^4.8/(g1*g2^2*g3^2) + (3*t^4.8)/(g1*g3) + t^4.8/(g1^2*g2*g3) + (g1*t^4.8)/(g2*g3) + (g2*t^4.8)/g3 + 3*g1*g3*t^4.8 + (g3*t^4.8)/g2 + g1^2*g2*g3*t^4.8 + g2^2*g3*t^4.8 + g1^2*g3^2*t^4.8 + g2*g3^2*t^4.8 + t^6./(g1^2*g2^2) + (2*t^6.)/(g1*g2) + 2*g1*g2*t^6. + g1^2*g2^2*t^6. + t^6./(g1^2*g3^2) + t^6./(g1*g2^2*g3^2) + (2*t^6.)/(g1*g3) + t^6./(g1^2*g2*g3) + (g1*t^6.)/(g2*g3) + (g2*t^6.)/g3 + 2*g1*g3*t^6. + (g3*t^6.)/g2 + g1^2*g2*g3*t^6. + g2^2*g3*t^6. + g1^2*g3^2*t^6. + g2*g3^2*t^6. + 10*t^7.2 + g1^3*t^7.2 + t^7.2/(g1^3*g2^3) + (4*t^7.2)/(g1^2*g2^2) + (6*t^7.2)/(g1*g2) + (g1^2*t^7.2)/g2 + 6*g1*g2*t^7.2 + (g2^2*t^7.2)/g1 + 4*g1^2*g2^2*t^7.2 + g2^3*t^7.2 + g1^3*g2^3*t^7.2 + t^7.2/(g1^3*g3^3) + t^7.2/(g1^3*g2^3*g3^3) + t^7.2/(g1^2*g2^2*g3^3) + (4*t^7.2)/(g1^2*g3^2) + t^7.2/(g1^2*g2^3*g3^2) + (3*t^7.2)/(g1*g2^2*g3^2) + t^7.2/(g2*g3^2) + t^7.2/(g1^3*g2*g3^2) + (g2*t^7.2)/(g1*g3^2) + (6*t^7.2)/(g1*g3) + (g1^2*t^7.2)/g3 + t^7.2/(g2^2*g3) + t^7.2/(g1^3*g2^2*g3) + (4*t^7.2)/(g1^2*g2*g3) + (3*g1*t^7.2)/(g2*g3) + (4*g2*t^7.2)/g3 + (g1*g2^2*t^7.2)/g3 + 6*g1*g3*t^7.2 + (g3*t^7.2)/(g1*g2^2) + (4*g3*t^7.2)/g2 + (g2*g3*t^7.2)/g1 + 4*g1^2*g2*g3*t^7.2 + 3*g2^2*g3*t^7.2 + g1^3*g2^2*g3*t^7.2 + g1*g2^3*g3*t^7.2 + (g3^2*t^7.2)/g1 + 4*g1^2*g3^2*t^7.2 + (g1*g3^2*t^7.2)/g2 + 3*g2*g3^2*t^7.2 + g1^3*g2*g3^2*t^7.2 + g1*g2^2*g3^2*t^7.2 + g3^3*t^7.2 + g1^3*g3^3*t^7.2 + g1*g2*g3^3*t^7.2 + t^8.4 + t^8.4/(g1^3*g2^3) + (3*t^8.4)/(g1^2*g2^2) + t^8.4/(g1*g2) + (g1^2*t^8.4)/g2 + g1*g2*t^8.4 + (g2^2*t^8.4)/g1 + 3*g1^2*g2^2*t^8.4 + g1^3*g2^3*t^8.4 + t^8.4/(g1^3*g3^3) + t^8.4/(g1^2*g2^2*g3^3) + (3*t^8.4)/(g1^2*g3^2) + t^8.4/(g1^2*g2^3*g3^2) + t^8.4/(g1*g2^2*g3^2) + t^8.4/(g2*g3^2) + t^8.4/(g1^3*g2*g3^2) + (g2*t^8.4)/(g1*g3^2) + t^8.4/(g1*g3) + (g1^2*t^8.4)/g3 + t^8.4/(g2^2*g3) + t^8.4/(g1^3*g2^2*g3) + (3*t^8.4)/(g1^2*g2*g3) + (g1*t^8.4)/(g2*g3) + (3*g2*t^8.4)/g3 + (g1*g2^2*t^8.4)/g3 + g1*g3*t^8.4 + (g3*t^8.4)/(g1*g2^2) + (3*g3*t^8.4)/g2 + (g2*g3*t^8.4)/g1 + 3*g1^2*g2*g3*t^8.4 + g2^2*g3*t^8.4 + g1^3*g2^2*g3*t^8.4 + g1*g2^3*g3*t^8.4 + (g3^2*t^8.4)/g1 + 3*g1^2*g3^2*t^8.4 + (g1*g3^2*t^8.4)/g2 + g2*g3^2*t^8.4 + g1^3*g2*g3^2*t^8.4 + g1*g2^2*g3^2*t^8.4 + g1^3*g3^3*t^8.4 + g1*g2*g3^3*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y - t^6.6/(g1*g3*y) - (g1*g3*t^6.6)/y + (2*t^7.8)/y + t^7.8/(g1*g2*y) + (g1*g2*t^7.8)/y + t^7.8/(g1*g3*y) + t^7.8/(g1^2*g2*g3*y) + (g2*t^7.8)/(g3*y) + (g1*g3*t^7.8)/y + (g3*t^7.8)/(g2*y) + (g1^2*g2*g3*t^7.8)/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y - (t^6.6*y)/(g1*g3) - g1*g3*t^6.6*y + 2*t^7.8*y + (t^7.8*y)/(g1*g2) + g1*g2*t^7.8*y + (t^7.8*y)/(g1*g3) + (t^7.8*y)/(g1^2*g2*g3) + (g2*t^7.8*y)/g3 + g1*g3*t^7.8*y + (g3*t^7.8*y)/g2 + g1^2*g2*g3*t^7.8*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47871 | SU3adj1nf2 | $\phi_1^5$ | 1.41 | 1.66 | 0.8494 | [X:[], M:[], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | 5*t^2.4 + 5*t^3.6 + 23*t^4.8 + 21*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail | {a: 141/100, c: 83/50, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |