Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59492 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.3185 1.581 0.834 [X:[], M:[0.8], q:[0.5333, 0.5333], qb:[0.2667, 0.2667], phi:[0.4]] [X:[], M:[[0]], q:[[0], [0]], qb:[[-1], [1]], phi:[[0]]] 1 {a: 2637/2000, c: 1581/1000, M1: 4/5, q1: 8/15, q2: 8/15, qb1: 4/15, qb2: 4/15, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ 2}\phi_{1}^{3}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 32 6*t^2.4 + 6*t^3.6 + 27*t^4.8 + 32*t^6. + 91*t^7.2 + 107*t^8.4 - t^4.2/y - t^5.4/y - (6*t^6.6)/y + (10*t^7.8)/y - t^4.2*y - t^5.4*y - 6*t^6.6*y + 10*t^7.8*y 2*t^2.4 + (2*t^2.4)/g1 + 2*g1*t^2.4 + (3*t^3.6)/g1 + 3*g1*t^3.6 + 7*t^4.8 + (3*t^4.8)/g1^2 + (7*t^4.8)/g1 + 7*g1*t^4.8 + 3*g1^2*t^4.8 + 6*t^6. + t^6./g1^3 + (5*t^6.)/g1^2 + (7*t^6.)/g1 + 7*g1*t^6. + 5*g1^2*t^6. + g1^3*t^6. + 23*t^7.2 + (4*t^7.2)/g1^3 + (15*t^7.2)/g1^2 + (15*t^7.2)/g1 + 15*g1*t^7.2 + 15*g1^2*t^7.2 + 4*g1^3*t^7.2 + 25*t^8.4 + (2*t^8.4)/g1^4 + (8*t^8.4)/g1^3 + (18*t^8.4)/g1^2 + (13*t^8.4)/g1 + 13*g1*t^8.4 + 18*g1^2*t^8.4 + 8*g1^3*t^8.4 + 2*g1^4*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - (2*t^6.6)/(g1*y) - (2*g1*t^6.6)/y + (4*t^7.8)/y + t^7.8/(g1^2*y) + (2*t^7.8)/(g1*y) + (2*g1*t^7.8)/y + (g1^2*t^7.8)/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - (2*t^6.6*y)/g1 - 2*g1*t^6.6*y + 4*t^7.8*y + (t^7.8*y)/g1^2 + (2*t^7.8*y)/g1 + 2*g1*t^7.8*y + g1^2*t^7.8*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60956 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.3352 1.6107 0.829 [X:[], M:[0.8, 0.7923], q:[0.5333, 0.5333], qb:[0.2744, 0.2589], phi:[0.4]] 3*t^2.38 + 2*t^2.4 + 2*t^2.42 + 3*t^3.58 + 2*t^3.62 + 6*t^4.75 + 9*t^4.78 + 9*t^4.8 + 7*t^4.82 + 3*t^4.85 + t^5.93 + 8*t^5.95 + 7*t^5.98 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57454 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3414 1.6039 0.8363 [M:[0.8], q:[0.5888, 0.4225], qb:[0.2944, 0.2944], phi:[0.4]] 2*t^2.151 + 2*t^2.4 + 2*t^2.649 + 2*t^3.351 + 4*t^3.849 + 3*t^4.301 + 6*t^4.551 + 7*t^4.8 + 8*t^5.049 + 3*t^5.299 + 4*t^5.501 + 4*t^5.751 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail