Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57419 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5158 1.7662 0.8582 [M:[0.6699, 0.6766], q:[0.4996, 0.4944], qb:[0.5004, 0.4937], phi:[0.3353]] [M:[[-5, -1, 1], [-5, 0, -5]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.01 + t^2.012 + t^2.03 + t^2.964 + t^2.98 + t^2.984 + t^3. + t^3.018 + t^3.986 + t^4.006 + t^4.02 + t^4.022 + t^4.024 + t^4.04 + t^4.042 + t^4.06 + t^4.974 + 2*t^4.976 + t^4.99 + 2*t^4.992 + 2*t^4.994 + 2*t^4.996 + 2*t^5.01 + 2*t^5.012 + t^5.014 + t^5.028 + 2*t^5.03 + t^5.048 + t^5.469 + t^5.471 + t^5.487 + t^5.489 + t^5.928 + t^5.944 + t^5.948 + t^5.96 + 2*t^5.964 + t^5.968 + t^5.982 + t^5.996 + 2*t^5.998 - 3*t^6. + t^6.002 + t^6.016 + 2*t^6.018 - t^6.02 + t^6.029 + t^6.032 + t^6.034 + 3*t^6.036 + t^6.05 + t^6.052 + t^6.054 + t^6.07 + t^6.072 + t^6.09 + t^6.475 + t^6.477 + t^6.493 + t^6.495 + t^6.95 + t^6.966 + 2*t^6.97 + t^6.984 + 3*t^6.986 + 2*t^6.988 + t^7. + 2*t^7.002 + 5*t^7.004 + 2*t^7.006 + 2*t^7.008 + 2*t^7.02 + 3*t^7.022 + 5*t^7.024 + t^7.026 + t^7.038 + 3*t^7.04 + 3*t^7.042 + t^7.044 + t^7.058 + 2*t^7.06 + t^7.078 + t^7.461 + t^7.467 + t^7.479 + 2*t^7.481 + t^7.483 + t^7.497 + 3*t^7.499 + 2*t^7.501 + t^7.515 + t^7.517 + t^7.519 + t^7.521 + t^7.938 + 2*t^7.94 + t^7.954 + 3*t^7.956 + t^7.958 + 3*t^7.96 + t^7.97 + 3*t^7.972 + 2*t^7.974 + 5*t^7.976 + t^7.978 + 2*t^7.98 + t^7.99 + 3*t^7.992 + 3*t^7.994 + t^7.996 + t^7.998 + t^8.005 + 2*t^8.008 - t^8.012 + 2*t^8.014 + t^8.026 + 2*t^8.028 - t^8.03 - t^8.032 + t^8.039 + t^8.041 + t^8.044 + 3*t^8.046 + 4*t^8.048 - t^8.05 + t^8.059 + t^8.062 + t^8.064 + 3*t^8.066 + t^8.079 + t^8.082 + t^8.084 + t^8.1 + t^8.102 + t^8.12 + t^8.433 + t^8.435 + t^8.449 + 2*t^8.451 + 2*t^8.453 + t^8.455 + t^8.467 + t^8.469 + t^8.471 + t^8.473 + 2*t^8.487 + t^8.489 - t^8.491 + 2*t^8.505 + t^8.507 - t^8.509 + t^8.892 + t^8.908 + t^8.912 + t^8.924 + 2*t^8.928 + t^8.933 + t^8.94 + t^8.944 + t^8.946 + t^8.948 + t^8.953 + t^8.96 + 3*t^8.962 - 5*t^8.964 + t^8.966 + t^8.976 + 3*t^8.978 - 3*t^8.98 + 5*t^8.982 - 6*t^8.984 + t^8.986 + t^8.994 + 3*t^8.996 + 5*t^8.998 - t^4.006/y - t^5.012/y - t^6.016/y - t^6.018/y - t^6.036/y - t^6.97/y - t^6.986/y - t^6.99/y - t^7.006/y - (2*t^7.024)/y + t^7.04/y + t^7.974/y + t^7.976/y + t^7.99/y + (3*t^7.994)/y + t^7.996/y + (2*t^8.01)/y + t^8.014/y - t^8.026/y - t^8.046/y - t^8.066/y + t^8.944/y + t^8.948/y + (2*t^8.964)/y + t^8.984/y - t^4.006*y - t^5.012*y - t^6.016*y - t^6.018*y - t^6.036*y - t^6.97*y - t^6.986*y - t^6.99*y - t^7.006*y - 2*t^7.024*y + t^7.04*y + t^7.974*y + t^7.976*y + t^7.99*y + 3*t^7.994*y + t^7.996*y + 2*t^8.01*y + t^8.014*y - t^8.026*y - t^8.046*y - t^8.066*y + t^8.944*y + t^8.948*y + 2*t^8.964*y + t^8.984*y (g3*t^2.01)/(g1^5*g2) + t^2.012/(g1^2*g3^2) + t^2.03/(g1^5*g3^5) + g1^6*g3^6*t^2.964 + (g3^6*t^2.98)/g2 + g1^6*g2*t^2.984 + t^3. + t^3.018/(g1^3*g3^3) + (g3^5*t^3.986)/(g1*g2) + t^4.006/(g1*g3) + (g3^2*t^4.02)/(g1^10*g2^2) + t^4.022/(g1^7*g2*g3) + t^4.024/(g1^4*g3^4) + t^4.04/(g1^10*g2*g3^4) + t^4.042/(g1^7*g3^7) + t^4.06/(g1^10*g3^10) + (g1*g3^7*t^4.974)/g2 + 2*g1^4*g3^4*t^4.976 + (g3^7*t^4.99)/(g1^5*g2^2) + (2*g3^4*t^4.992)/(g1^2*g2) + 2*g1*g3*t^4.994 + (2*g1^4*g2*t^4.996)/g3^2 + (2*g3*t^5.01)/(g1^5*g2) + (2*t^5.012)/(g1^2*g3^2) + (g1*g2*t^5.014)/g3^5 + t^5.028/(g1^8*g2*g3^2) + (2*t^5.03)/(g1^5*g3^5) + t^5.048/(g1^8*g3^8) + (g2*g3^11*t^5.469)/g1 + (g1^11*t^5.471)/(g2*g3) + (g1^5*t^5.487)/(g2^2*g3) + (g2^2*g3^5*t^5.489)/g1 + g1^12*g3^12*t^5.928 + (g1^6*g3^12*t^5.944)/g2 + g1^12*g2*g3^6*t^5.948 + (g3^12*t^5.96)/g2^2 + 2*g1^6*g3^6*t^5.964 + g1^12*g2^2*t^5.968 + g1^3*g3^3*t^5.982 + (g3^6*t^5.996)/(g1^6*g2^2) + (2*g3^3*t^5.998)/(g1^3*g2) - 3*t^6. + (g1^3*g2*t^6.002)/g3^3 + t^6.016/(g1^6*g2) + (2*t^6.018)/(g1^3*g3^3) - (g2*t^6.02)/g3^6 + (g3^3*t^6.029)/(g1^15*g2^3) + t^6.032/(g1^12*g2^2) + t^6.034/(g1^9*g2*g3^3) + (3*t^6.036)/(g1^6*g3^6) + t^6.05/(g1^15*g2^2*g3^3) + t^6.052/(g1^12*g2*g3^6) + t^6.054/(g1^9*g3^9) + t^6.07/(g1^15*g2*g3^9) + t^6.072/(g1^12*g3^12) + t^6.09/(g1^15*g3^15) + (g2*g3^10*t^6.475)/g1^2 + (g1^10*t^6.477)/(g2*g3^2) + (g1^4*t^6.493)/(g2^2*g3^2) + (g2^2*g3^4*t^6.495)/g1^2 + (g1^5*g3^11*t^6.95)/g2 + (g3^11*t^6.966)/(g1*g2^2) + 2*g1^5*g3^5*t^6.97 + (g3^8*t^6.984)/(g1^4*g2^2) + (3*g3^5*t^6.986)/(g1*g2) + 2*g1^2*g3^2*t^6.988 + (g3^8*t^7.)/(g1^10*g2^3) + (2*g3^5*t^7.002)/(g1^7*g2^2) + (5*g3^2*t^7.004)/(g1^4*g2) + (2*t^7.006)/(g1*g3) + (2*g1^2*g2*t^7.008)/g3^4 + (2*g3^2*t^7.02)/(g1^10*g2^2) + (3*t^7.022)/(g1^7*g2*g3) + (5*t^7.024)/(g1^4*g3^4) + (g2*t^7.026)/(g1*g3^7) + t^7.038/(g1^13*g2^2*g3) + (3*t^7.04)/(g1^10*g2*g3^4) + (3*t^7.042)/(g1^7*g3^7) + (g2*t^7.044)/(g1^4*g3^10) + t^7.058/(g1^13*g2*g3^7) + (2*t^7.06)/(g1^10*g3^10) + t^7.078/(g1^13*g3^13) + (g3^15*t^7.461)/g1^3 + (g1^15*t^7.467)/g3^3 + (g3^12*t^7.479)/g1^6 + (2*g2*g3^9*t^7.481)/g1^3 + (2*g1^9*t^7.483)/(g2*g3^3) - g2^2*g3^6*t^7.483 + t^7.497/g2^3 + (2*g1^3*t^7.499)/(g2^2*g3^3) + (g2*g3^6*t^7.499)/g1^6 + (2*g2^2*g3^3*t^7.501)/g1^3 + t^7.515/(g1^3*g2^3*g3^3) + t^7.517/(g2^2*g3^6) + (g2^2*t^7.519)/g1^6 + (g2^3*t^7.521)/(g1^3*g3^3) + (g1^7*g3^13*t^7.938)/g2 + 2*g1^10*g3^10*t^7.94 + (g1*g3^13*t^7.954)/g2^2 + (3*g1^4*g3^10*t^7.956)/g2 + g1^7*g3^7*t^7.958 + 3*g1^10*g2*g3^4*t^7.96 + (g3^13*t^7.97)/(g1^5*g2^3) + (3*g3^10*t^7.972)/(g1^2*g2^2) + (2*g1*g3^7*t^7.974)/g2 + 5*g1^4*g3^4*t^7.976 + g1^7*g2*g3*t^7.978 + (2*g1^10*g2^2*t^7.98)/g3^2 + (g3^7*t^7.99)/(g1^5*g2^2) + (3*g3^4*t^7.992)/(g1^2*g2) + 3*g1*g3*t^7.994 + (g1^4*g2*t^7.996)/g3^2 + (g1^7*g2^2*t^7.998)/g3^5 + (g3^7*t^8.005)/(g1^11*g2^3) + (2*g3^4*t^8.008)/(g1^8*g2^2) - t^8.012/(g1^2*g3^2) + (2*g1*g2*t^8.014)/g3^5 + (g3*t^8.026)/(g1^11*g2^2) + (2*t^8.028)/(g1^8*g2*g3^2) - t^8.03/(g1^5*g3^5) - (g2*t^8.032)/(g1^2*g3^8) + (g3^4*t^8.039)/(g1^20*g2^4) + (g3*t^8.041)/(g1^17*g2^3) + t^8.044/(g1^14*g2^2*g3^2) + (3*t^8.046)/(g1^11*g2*g3^5) + (4*t^8.048)/(g1^8*g3^8) - (g2*t^8.05)/(g1^5*g3^11) + t^8.059/(g1^20*g2^3*g3^2) + t^8.062/(g1^17*g2^2*g3^5) + t^8.064/(g1^14*g2*g3^8) + (3*t^8.066)/(g1^11*g3^11) + t^8.079/(g1^20*g2^2*g3^8) + t^8.082/(g1^17*g2*g3^11) + t^8.084/(g1^14*g3^14) + t^8.1/(g1^20*g2*g3^14) + t^8.102/(g1^17*g3^17) + t^8.12/(g1^20*g3^20) + g1^5*g2*g3^17*t^8.433 + (g1^17*g3^5*t^8.435)/g2 + (g3^17*t^8.449)/g1 + (2*g1^11*g3^5*t^8.451)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.453 + (g1^17*t^8.455)/g3 + (g1^5*g3^5*t^8.467)/g2^3 + (g2*g3^11*t^8.469)/g1 + (g1^11*t^8.471)/(g2*g3) + g1^5*g2^3*g3^5*t^8.473 + (2*g2*g3^8*t^8.487)/g1^4 + (2*g1^8*t^8.489)/(g2*g3^4) - (g2^2*g3^5*t^8.489)/g1 - (g1^11*t^8.491)/g3^7 + (2*g1^2*t^8.505)/(g2^2*g3^4) - (g1^5*t^8.507)/(g2*g3^7) + (2*g2^2*g3^2*t^8.507)/g1^4 - (g2^3*t^8.509)/(g1*g3) + g1^18*g3^18*t^8.892 + (g1^12*g3^18*t^8.908)/g2 + g1^18*g2*g3^12*t^8.912 + (g1^6*g3^18*t^8.924)/g2^2 + 2*g1^12*g3^12*t^8.928 + g1^18*g2^2*g3^6*t^8.933 + (g3^18*t^8.94)/g2^3 + (g1^6*g3^12*t^8.944)/g2 + g1^9*g3^9*t^8.946 + g1^12*g2*g3^6*t^8.948 + g1^18*g2^3*t^8.953 + (g3^12*t^8.96)/g2^2 + (3*g1^3*g3^9*t^8.962)/g2 - 5*g1^6*g3^6*t^8.964 + g1^9*g2*g3^3*t^8.966 + (g3^12*t^8.976)/(g1^6*g2^3) + (3*g3^9*t^8.978)/(g1^3*g2^2) - (3*g3^6*t^8.98)/g2 + 5*g1^3*g3^3*t^8.982 - 6*g1^6*g2*t^8.984 + (g1^9*g2^2*t^8.986)/g3^3 + (g3^9*t^8.994)/(g1^9*g2^3) + (3*g3^6*t^8.996)/(g1^6*g2^2) + (5*g3^3*t^8.998)/(g1^3*g2) - t^4.006/(g1*g3*y) - t^5.012/(g1^2*g3^2*y) - t^6.016/(g1^6*g2*y) - t^6.018/(g1^3*g3^3*y) - t^6.036/(g1^6*g3^6*y) - (g1^5*g3^5*t^6.97)/y - (g3^5*t^6.986)/(g1*g2*y) - (g1^5*g2*t^6.99)/(g3*y) - t^7.006/(g1*g3*y) - (2*t^7.024)/(g1^4*g3^4*y) + t^7.04/(g1^10*g2*g3^4*y) + (g1*g3^7*t^7.974)/(g2*y) + (g1^4*g3^4*t^7.976)/y + (g3^7*t^7.99)/(g1^5*g2^2*y) + (3*g1*g3*t^7.994)/y + (g1^4*g2*t^7.996)/(g3^2*y) + (2*g3*t^8.01)/(g1^5*g2*y) + (g1*g2*t^8.014)/(g3^5*y) - (g3*t^8.026)/(g1^11*g2^2*y) - t^8.046/(g1^11*g2*g3^5*y) - t^8.066/(g1^11*g3^11*y) + (g1^6*g3^12*t^8.944)/(g2*y) + (g1^12*g2*g3^6*t^8.948)/y + (2*g1^6*g3^6*t^8.964)/y + (g1^6*g2*t^8.984)/y - (t^4.006*y)/(g1*g3) - (t^5.012*y)/(g1^2*g3^2) - (t^6.016*y)/(g1^6*g2) - (t^6.018*y)/(g1^3*g3^3) - (t^6.036*y)/(g1^6*g3^6) - g1^5*g3^5*t^6.97*y - (g3^5*t^6.986*y)/(g1*g2) - (g1^5*g2*t^6.99*y)/g3 - (t^7.006*y)/(g1*g3) - (2*t^7.024*y)/(g1^4*g3^4) + (t^7.04*y)/(g1^10*g2*g3^4) + (g1*g3^7*t^7.974*y)/g2 + g1^4*g3^4*t^7.976*y + (g3^7*t^7.99*y)/(g1^5*g2^2) + 3*g1*g3*t^7.994*y + (g1^4*g2*t^7.996*y)/g3^2 + (2*g3*t^8.01*y)/(g1^5*g2) + (g1*g2*t^8.014*y)/g3^5 - (g3*t^8.026*y)/(g1^11*g2^2) - (t^8.046*y)/(g1^11*g2*g3^5) - (t^8.066*y)/(g1^11*g3^11) + (g1^6*g3^12*t^8.944*y)/g2 + g1^12*g2*g3^6*t^8.948*y + 2*g1^6*g3^6*t^8.964*y + g1^6*g2*t^8.984*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60549 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.0815 1.2564 0.8608 [X:[1.6011, 1.3933], M:[1.2022, 0.9944], q:[0.7355, 0.1344], qb:[0.2645, 0.4724], phi:[0.3989]] t^2.39 + t^2.98 + t^3. + 2*t^3.59 + t^3.61 + t^3.62 + t^4.18 + t^4.2 + 2*t^4.21 + t^4.79 + 2*t^4.8 + 2*t^4.82 + t^5.39 + t^5.4 + t^5.41 + 2*t^5.97 + 3*t^5.98 - 4*t^6. - t^4.2/y - t^5.39/y - t^4.2*y - t^5.39*y detail
58861 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4321 1.6791 0.8529 [X:[], M:[0.8932, 0.8447], q:[0.5852, 0.323], qb:[0.4148, 0.4634], phi:[0.3689]] 2*t^2.21 + t^2.36 + t^2.53 + t^2.68 + t^3. + t^3.15 + t^3.32 + t^4.11 + t^4.25 + 4*t^4.43 + 3*t^4.57 + t^4.72 + 2*t^4.75 + t^4.8 + 3*t^4.89 + t^4.99 + t^5.04 + t^5.07 + t^5.13 + 3*t^5.21 + 5*t^5.36 + t^5.5 + 3*t^5.53 + t^5.59 + 3*t^5.68 + t^5.83 + t^5.91 - 2*t^6. - t^4.11/y - t^5.21/y - t^4.11*y - t^5.21*y detail
59399 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2023 1.4358 0.8373 [X:[1.5714], M:[0.8343, 1.1429], q:[0.4861, 0.2232], qb:[0.5139, 0.2054], phi:[0.4286]] t^2.07 + t^2.21 + t^2.5 + t^2.57 + t^3. + t^3.36 + t^3.43 + 2*t^3.86 + t^4.06 + t^4.08 + t^4.15 + 2*t^4.29 + t^4.42 + t^4.58 + 2*t^4.65 + 2*t^4.71 + 2*t^4.78 + t^4.87 + t^4.99 + t^5.01 + t^5.07 + t^5.14 + t^5.35 + t^5.37 + t^5.43 + 2*t^5.5 + 3*t^5.57 + t^5.64 + t^5.71 + t^5.86 + t^5.87 + 4*t^5.93 - 3*t^6. - t^4.29/y - t^5.57/y - t^4.29*y - t^5.57*y detail
58881 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4598 1.7184 0.8495 [X:[], M:[0.7374, 0.875], q:[0.493, 0.3806], qb:[0.507, 0.3694], phi:[0.375]] t^2.21 + 2*t^2.25 + t^2.59 + t^2.62 + t^2.66 + t^3. + t^3.38 + t^3.71 + t^4.12 + t^4.42 + 2*t^4.46 + 4*t^4.5 + t^4.8 + 4*t^4.84 + t^4.86 + 3*t^4.88 + t^4.89 + 3*t^4.91 + t^5.17 + 2*t^5.21 + t^5.22 + 5*t^5.25 + t^5.28 + t^5.29 + t^5.33 + t^5.59 + 3*t^5.62 + t^5.92 + 3*t^5.96 + t^5.99 - 2*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47900 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.495 1.7254 0.8664 [M:[0.6707], q:[0.4996, 0.493], qb:[0.5004, 0.4921], phi:[0.3358]] t^2.012 + t^2.015 + t^2.955 + t^2.975 + t^2.98 + t^3. + t^3.022 + t^3.963 + t^3.982 + t^4.007 + t^4.024 + t^4.027 + t^4.03 + t^4.968 + 2*t^4.97 + t^4.987 + 2*t^4.99 + t^4.993 + 2*t^4.995 + t^5.012 + 2*t^5.015 + t^5.035 + t^5.037 + t^5.462 + t^5.464 + t^5.484 + t^5.486 + t^5.911 + t^5.93 + t^5.936 + t^5.95 + 2*t^5.955 + t^5.961 + t^5.975 + 2*t^5.978 + t^5.995 + 2*t^5.997 - 3*t^6. - t^4.007/y - t^5.015/y - t^4.007*y - t^5.015*y detail