Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59399 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2023 1.4358 0.8373 [X:[1.5714], M:[0.8343, 1.1429], q:[0.4861, 0.2232], qb:[0.5139, 0.2054], phi:[0.4286]] [X:[[0, 0]], M:[[-1, 1], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.07 + t^2.21 + t^2.5 + t^2.57 + t^3. + t^3.36 + t^3.43 + 2*t^3.86 + t^4.06 + t^4.08 + t^4.15 + 2*t^4.29 + t^4.42 + t^4.58 + 2*t^4.65 + 2*t^4.71 + 2*t^4.78 + t^4.87 + t^4.99 + t^5.01 + t^5.07 + t^5.14 + t^5.35 + t^5.37 + t^5.43 + 2*t^5.5 + 3*t^5.57 + t^5.64 + t^5.71 + t^5.86 + t^5.87 + 4*t^5.93 - 3*t^6. + 2*t^6.07 + t^6.13 + 2*t^6.16 + t^6.22 + 2*t^6.27 + t^6.29 + 4*t^6.36 + 3*t^6.43 + t^6.5 + t^6.56 + 3*t^6.63 + 3*t^6.65 - t^6.7 + 3*t^6.72 + 2*t^6.79 + 6*t^6.86 + t^6.95 + 2*t^6.99 + t^7.06 + 2*t^7.08 + 2*t^7.15 + t^7.2 + 6*t^7.22 + t^7.29 + 2*t^7.35 + t^7.37 + 2*t^7.42 + 3*t^7.44 + t^7.51 + 2*t^7.56 + 3*t^7.58 + 4*t^7.65 + 6*t^7.71 + 3*t^7.78 + 3*t^7.92 + 4*t^7.94 - t^7.99 + 4*t^8.01 - t^8.07 + t^8.08 + t^8.12 + 9*t^8.14 + t^8.17 - 3*t^8.21 + 4*t^8.23 + 3*t^8.28 + t^8.3 + 3*t^8.35 + 4*t^8.37 + 5*t^8.43 + t^8.44 + 3*t^8.48 + 2*t^8.5 + t^8.51 + 5*t^8.64 + 5*t^8.71 + 6*t^8.73 - t^8.77 + 3*t^8.79 - 2*t^8.8 + 4*t^8.84 + t^8.85 + 4*t^8.86 + 3*t^8.87 - 2*t^8.91 + 10*t^8.93 + t^8.95 - t^4.29/y - t^5.57/y - t^6.36/y - t^6.5/y - t^6.79/y + t^7.58/y + t^7.71/y + t^7.78/y + t^8.07/y - (2*t^8.14)/y + t^8.21/y + (2*t^8.5)/y + t^8.57/y + t^8.64/y - t^8.71/y + (3*t^8.93)/y - t^4.29*y - t^5.57*y - t^6.36*y - t^6.5*y - t^6.79*y + t^7.58*y + t^7.71*y + t^7.78*y + t^8.07*y - 2*t^8.14*y + t^8.21*y + 2*t^8.5*y + t^8.57*y + t^8.64*y - t^8.71*y + 3*t^8.93*y (g2*t^2.07)/g1 + (g1*t^2.21)/g2 + (g2*t^2.5)/g1 + t^2.57 + t^3. + (g2*t^3.36)/g1 + t^3.43 + 2*t^3.86 + g1*g2^2*t^4.06 + t^4.08/(g1*g2^2) + (g2^2*t^4.15)/g1^2 + 2*t^4.29 + (g1^2*t^4.42)/g2^2 + (g2^2*t^4.58)/g1^2 + (2*g2*t^4.65)/g1 + 2*t^4.71 + (2*g1*t^4.78)/g2 + t^4.87/(g1^2*g2) + g1^2*g2*t^4.99 + (g2^2*t^5.01)/g1^2 + (g2*t^5.07)/g1 + t^5.14 + g1*g2^2*t^5.35 + t^5.37/(g1*g2^2) + (g2^2*t^5.43)/g1^2 + (2*g2*t^5.5)/g1 + 3*t^5.57 + (g1*t^5.64)/g2 + g2^3*t^5.71 + (g2^2*t^5.86)/g1^2 + t^5.87/g2^3 + (4*g2*t^5.93)/g1 - 3*t^6. + (2*g1*t^6.07)/g2 + g2^3*t^6.13 + (2*t^6.16)/(g1^2*g2) + (g2^3*t^6.22)/g1^3 + 2*g1^2*g2*t^6.27 + t^6.29/g2^3 + (4*g2*t^6.36)/g1 + 3*t^6.43 + (g1*t^6.5)/g2 + g2^3*t^6.56 + (g1^3*t^6.63)/g2^3 + 2*g1*g2^2*t^6.63 + (2*t^6.65)/(g1*g2^2) + (g2^3*t^6.65)/g1^3 - g1^2*g2*t^6.7 + (3*g2^2*t^6.72)/g1^2 + (2*g2*t^6.79)/g1 + 6*t^6.86 + t^6.95/g1^3 + (2*g1^2*t^6.99)/g2^2 + g1*g2^2*t^7.06 + t^7.08/(g1*g2^2) + (g2^3*t^7.08)/g1^3 + (2*g2^2*t^7.15)/g1^2 + g1^3*t^7.2 + (6*g2*t^7.22)/g1 + t^7.29 + (2*g1*t^7.35)/g2 + t^7.37/g1^3 + 2*g2^3*t^7.42 + (3*t^7.44)/(g1^2*g2) - t^7.51/(g1*g2^2) + (2*g2^3*t^7.51)/g1^3 + 2*g1^2*g2*t^7.56 + t^7.58/g2^3 + (2*g2^2*t^7.58)/g1^2 + (4*g2*t^7.65)/g1 + 6*t^7.71 + (2*g1*t^7.78)/g2 + (g2^4*t^7.78)/g1 + (g1^2*t^7.85)/g2^2 - g2^3*t^7.85 + 3*g1*g2^2*t^7.92 + (3*t^7.94)/(g1*g2^2) + (g2^3*t^7.94)/g1^3 - g1^2*g2*t^7.99 - (2*t^8.01)/g2^3 + (6*g2^2*t^8.01)/g1^2 - (g2*t^8.07)/g1 + (g1*t^8.08)/g2^4 + g1^2*g2^4*t^8.12 + 9*t^8.14 + t^8.17/(g1^2*g2^4) - (5*g1*t^8.21)/g2 + (2*g2^4*t^8.21)/g1 + (4*t^8.23)/g1^3 + (2*g1^2*t^8.28)/g2^2 + g2^3*t^8.28 + (g2^4*t^8.3)/g1^4 + 3*g1*g2^2*t^8.35 + (3*t^8.37)/(g1*g2^2) + (g2^3*t^8.37)/g1^3 + (5*g2^2*t^8.43)/g1^2 + t^8.44/g2^3 + 3*g1^3*t^8.48 + (2*g2*t^8.5)/g1 + (g1*t^8.51)/g2^4 + (4*g1*t^8.64)/g2 + (g2^4*t^8.64)/g1 + (g1^2*t^8.71)/g2^2 + 4*g2^3*t^8.71 + (5*t^8.73)/(g1^2*g2) + (g2^4*t^8.73)/g1^4 - g1*g2^2*t^8.77 + (3*g2^3*t^8.79)/g1^3 - (2*t^8.8)/(g1*g2^2) + 4*g1^2*g2*t^8.84 + (g1^4*t^8.85)/g2^4 + (4*g2^2*t^8.86)/g1^2 + (3*t^8.87)/g2^3 - 2*g1^3*t^8.91 + (10*g2*t^8.93)/g1 + t^8.95/(g1^3*g2^3) - t^4.29/y - t^5.57/y - (g2*t^6.36)/(g1*y) - (g1*t^6.5)/(g2*y) - (g2*t^6.79)/(g1*y) + (g2^2*t^7.58)/(g1^2*y) + t^7.71/y + (g1*t^7.78)/(g2*y) + (g2*t^8.07)/(g1*y) - (2*t^8.14)/y + (g1*t^8.21)/(g2*y) + (2*g2*t^8.5)/(g1*y) + t^8.57/y + (g1*t^8.64)/(g2*y) - (g1^2*t^8.71)/(g2^2*y) + (3*g2*t^8.93)/(g1*y) - t^4.29*y - t^5.57*y - (g2*t^6.36*y)/g1 - (g1*t^6.5*y)/g2 - (g2*t^6.79*y)/g1 + (g2^2*t^7.58*y)/g1^2 + t^7.71*y + (g1*t^7.78*y)/g2 + (g2*t^8.07*y)/g1 - 2*t^8.14*y + (g1*t^8.21*y)/g2 + (2*g2*t^8.5*y)/g1 + t^8.57*y + (g1*t^8.64*y)/g2 - (g1^2*t^8.71*y)/g2^2 + (3*g2*t^8.93*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57419 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5158 1.7662 0.8582 [M:[0.6699, 0.6766], q:[0.4996, 0.4944], qb:[0.5004, 0.4937], phi:[0.3353]] t^2.01 + t^2.012 + t^2.03 + t^2.964 + t^2.98 + t^2.984 + t^3. + t^3.018 + t^3.986 + t^4.006 + t^4.02 + t^4.022 + t^4.024 + t^4.04 + t^4.042 + t^4.06 + t^4.974 + 2*t^4.976 + t^4.99 + 2*t^4.992 + 2*t^4.994 + 2*t^4.996 + 2*t^5.01 + 2*t^5.012 + t^5.014 + t^5.028 + 2*t^5.03 + t^5.048 + t^5.469 + t^5.471 + t^5.487 + t^5.489 + t^5.928 + t^5.944 + t^5.948 + t^5.96 + 2*t^5.964 + t^5.968 + t^5.982 + t^5.996 + 2*t^5.998 - 3*t^6. - t^4.006/y - t^5.012/y - t^4.006*y - t^5.012*y detail