Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58881 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4598 1.7184 0.8495 [X:[], M:[0.7374, 0.875], q:[0.493, 0.3806], qb:[0.507, 0.3694], phi:[0.375]] [X:[], M:[[-1, 1], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.21 + 2*t^2.25 + t^2.59 + t^2.62 + t^2.66 + t^3. + t^3.38 + t^3.71 + t^4.12 + t^4.42 + 2*t^4.46 + 4*t^4.5 + t^4.8 + 4*t^4.84 + t^4.86 + 3*t^4.88 + t^4.89 + 3*t^4.91 + t^5.17 + 2*t^5.21 + t^5.22 + 5*t^5.25 + t^5.28 + t^5.29 + t^5.33 + t^5.59 + 3*t^5.62 + t^5.92 + 3*t^5.96 + t^5.99 - 2*t^6. + t^6.01 + t^6.04 + t^6.3 + t^6.34 + t^6.35 - t^6.37 + 5*t^6.38 + t^6.4 - t^6.41 + t^6.64 + 2*t^6.67 + t^6.7 + 5*t^6.71 + 8*t^6.75 + t^6.8 + t^7.01 + 4*t^7.05 + t^7.07 + 10*t^7.09 + 3*t^7.11 + t^7.12 + 3*t^7.13 + 3*t^7.14 - t^7.15 + 6*t^7.16 + t^7.39 + 6*t^7.42 + t^7.44 + t^7.45 + 6*t^7.46 + 4*t^7.47 + t^7.49 + 13*t^7.5 + 4*t^7.53 + 2*t^7.54 + t^7.55 + 3*t^7.58 + t^7.76 + 2*t^7.8 + 2*t^7.81 + 7*t^7.84 + t^7.85 + t^7.86 + 8*t^7.88 + t^7.89 + t^7.9 + 3*t^7.91 + 2*t^7.94 + t^7.95 + t^7.99 + t^8.14 + 3*t^8.17 + 5*t^8.21 + 3*t^8.24 - 4*t^8.25 + 3*t^8.26 - t^8.28 + 3*t^8.29 - t^8.3 + t^8.51 + 5*t^8.55 + 2*t^8.57 - t^8.59 + 4*t^8.6 - t^8.61 + 7*t^8.62 - 2*t^8.64 + 3*t^8.65 - 7*t^8.66 + t^8.68 - t^8.69 + t^8.7 + t^8.85 + 3*t^8.89 + t^8.91 + 5*t^8.92 + 2*t^8.94 + 2*t^8.95 + 13*t^8.96 - t^8.97 + 2*t^8.99 - t^4.12/y - t^5.25/y - t^6.34/y - (2*t^6.38)/y - t^6.71/y - t^6.75/y - t^6.79/y - t^7.12/y + t^7.46/y - t^7.5/y + t^7.8/y + (2*t^7.84)/y + (3*t^7.88)/y + (2*t^7.91)/y + (2*t^8.21)/y + (2*t^8.25)/y + t^8.29/y - t^8.55/y - t^8.62/y + t^8.66/y - t^8.96/y - t^4.12*y - t^5.25*y - t^6.34*y - 2*t^6.38*y - t^6.71*y - t^6.75*y - t^6.79*y - t^7.12*y + t^7.46*y - t^7.5*y + t^7.8*y + 2*t^7.84*y + 3*t^7.88*y + 2*t^7.91*y + 2*t^8.21*y + 2*t^8.25*y + t^8.29*y - t^8.55*y - t^8.62*y + t^8.66*y - t^8.96*y (g2*t^2.21)/g1 + 2*t^2.25 + (g2*t^2.59)/g1 + t^2.62 + (g1*t^2.66)/g2 + t^3. + t^3.38 + (g2*t^3.71)/g1 + t^4.12 + (g2^2*t^4.42)/g1^2 + (2*g2*t^4.46)/g1 + 4*t^4.5 + (g2^2*t^4.8)/g1^2 + (4*g2*t^4.84)/g1 + g1*g2^2*t^4.86 + 3*t^4.88 + t^4.89/(g1*g2^2) + (3*g1*t^4.91)/g2 + (g2^2*t^5.17)/g1^2 + (2*g2*t^5.21)/g1 + t^5.22/(g1^2*g2) + 5*t^5.25 + g1^2*g2*t^5.28 + (g1*t^5.29)/g2 + (g1^2*t^5.33)/g2^2 + (g2*t^5.59)/g1 + 3*t^5.62 + (g2^2*t^5.92)/g1^2 + (3*g2*t^5.96)/g1 + g1*g2^2*t^5.99 - 2*t^6. + t^6.01/(g1*g2^2) + (g1*t^6.04)/g2 + (g2^2*t^6.3)/g1^2 + (g2*t^6.34)/g1 + t^6.35/(g1^2*g2) - t^6.37 + 5*t^6.38 + g1^2*g2*t^6.4 - (g1*t^6.41)/g2 + (g2^3*t^6.64)/g1^3 + (2*g2^2*t^6.67)/g1^2 + g2^3*t^6.7 + (5*g2*t^6.71)/g1 + 8*t^6.75 + t^6.8/g2^3 + (g2^3*t^7.01)/g1^3 + (4*g2^2*t^7.05)/g1^2 + g2^3*t^7.07 + (10*g2*t^7.09)/g1 + 3*g1*g2^2*t^7.11 + t^7.12 + 3*t^7.13 + (3*t^7.14)/(g1*g2^2) - g1^2*g2*t^7.15 + (6*g1*t^7.16)/g2 + (g2^3*t^7.39)/g1^3 + (6*g2^2*t^7.42)/g1^2 + t^7.44/g1^3 + g2^3*t^7.45 + (6*g2*t^7.46)/g1 + (4*t^7.47)/(g1^2*g2) + g1*g2^2*t^7.49 + 13*t^7.5 + 4*g1^2*g2*t^7.53 + (2*g1*t^7.54)/g2 + t^7.55/g2^3 + (3*g1^2*t^7.58)/g2^2 + (g2^3*t^7.76)/g1^3 + (2*g2^2*t^7.8)/g1^2 + (2*t^7.81)/g1^3 + (7*g2*t^7.84)/g1 + t^7.85/(g1^2*g2) + g1*g2^2*t^7.86 + 8*t^7.88 + t^7.89/(g1*g2^2) + g1^2*g2*t^7.9 + (3*g1*t^7.91)/g2 + 2*g1^3*t^7.94 + (g1^2*t^7.95)/g2^2 + (g1^3*t^7.99)/g2^3 + (g2^3*t^8.14)/g1^3 + (3*g2^2*t^8.17)/g1^2 + (5*g2*t^8.21)/g1 + 3*g1*g2^2*t^8.24 - 4*t^8.25 + (3*t^8.26)/(g1*g2^2) - g1^2*g2*t^8.28 + (3*g1*t^8.29)/g2 - t^8.3/g2^3 + (g2^3*t^8.51)/g1^3 + (5*g2^2*t^8.55)/g1^2 + 2*g2^3*t^8.57 - (g2*t^8.59)/g1 + (4*t^8.6)/(g1^2*g2) - g1*g2^2*t^8.61 + 7*t^8.62 - (2*t^8.64)/(g1*g2^2) + 3*g1^2*g2*t^8.65 - (7*g1*t^8.66)/g2 + t^8.68/g2^3 - g1^3*t^8.69 + (g1^2*t^8.7)/g2^2 + (g2^4*t^8.85)/g1^4 + (3*g2^3*t^8.89)/g1^3 + (g2^4*t^8.91)/g1 + (5*g2^2*t^8.92)/g1^2 + (2*t^8.94)/g1^3 + 2*g2^3*t^8.95 + (13*g2*t^8.96)/g1 - t^8.97/(g1^2*g2) + 2*g1*g2^2*t^8.99 - t^4.12/y - t^5.25/y - (g2*t^6.34)/(g1*y) - (2*t^6.38)/y - (g2*t^6.71)/(g1*y) - t^6.75/y - (g1*t^6.79)/(g2*y) - t^7.12/y + (g2*t^7.46)/(g1*y) - t^7.5/y + (g2^2*t^7.8)/(g1^2*y) + (2*g2*t^7.84)/(g1*y) + (3*t^7.88)/y + (2*g1*t^7.91)/(g2*y) + (2*g2*t^8.21)/(g1*y) + (2*t^8.25)/y + (g1*t^8.29)/(g2*y) - (g2^2*t^8.55)/(g1^2*y) - t^8.62/y + (g1*t^8.66)/(g2*y) - (g2*t^8.96)/(g1*y) - t^4.12*y - t^5.25*y - (g2*t^6.34*y)/g1 - 2*t^6.38*y - (g2*t^6.71*y)/g1 - t^6.75*y - (g1*t^6.79*y)/g2 - t^7.12*y + (g2*t^7.46*y)/g1 - t^7.5*y + (g2^2*t^7.8*y)/g1^2 + (2*g2*t^7.84*y)/g1 + 3*t^7.88*y + (2*g1*t^7.91*y)/g2 + (2*g2*t^8.21*y)/g1 + 2*t^8.25*y + (g1*t^8.29*y)/g2 - (g2^2*t^8.55*y)/g1^2 - t^8.62*y + (g1*t^8.66*y)/g2 - (g2*t^8.96*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57419 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5158 1.7662 0.8582 [M:[0.6699, 0.6766], q:[0.4996, 0.4944], qb:[0.5004, 0.4937], phi:[0.3353]] t^2.01 + t^2.012 + t^2.03 + t^2.964 + t^2.98 + t^2.984 + t^3. + t^3.018 + t^3.986 + t^4.006 + t^4.02 + t^4.022 + t^4.024 + t^4.04 + t^4.042 + t^4.06 + t^4.974 + 2*t^4.976 + t^4.99 + 2*t^4.992 + 2*t^4.994 + 2*t^4.996 + 2*t^5.01 + 2*t^5.012 + t^5.014 + t^5.028 + 2*t^5.03 + t^5.048 + t^5.469 + t^5.471 + t^5.487 + t^5.489 + t^5.928 + t^5.944 + t^5.948 + t^5.96 + 2*t^5.964 + t^5.968 + t^5.982 + t^5.996 + 2*t^5.998 - 3*t^6. - t^4.006/y - t^5.012/y - t^4.006*y - t^5.012*y detail