Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57418 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4963 1.7307 0.8646 [M:[0.6788, 0.978], q:[0.4987, 0.4793], qb:[0.5013, 0.4767], phi:[0.3407]] [M:[[-5, -1, 1], [3, 0, 3]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.036 + t^2.044 + t^2.868 + t^2.926 + t^2.934 + t^2.942 + t^3. + t^3.89 + t^3.948 + t^4.022 + t^4.073 + t^4.08 + t^4.088 + t^4.904 + 2*t^4.912 + t^4.962 + 3*t^4.97 + 2*t^4.978 + 2*t^4.986 + t^5.036 + 2*t^5.044 + t^5.386 + t^5.394 + t^5.452 + t^5.46 + t^5.736 + t^5.794 + t^5.802 + t^5.81 + t^5.852 + t^5.86 + 3*t^5.868 + t^5.876 + t^5.883 + t^5.926 + 2*t^5.934 + t^5.985 + t^5.992 - 3*t^6. + t^6.066 - t^6.074 + t^6.109 + t^6.117 + t^6.124 + t^6.132 + t^6.408 + t^6.416 + t^6.474 + t^6.482 + t^6.758 + 2*t^6.816 + t^6.824 + t^6.832 + t^6.874 + t^6.882 + 3*t^6.89 + t^6.94 + 3*t^6.948 + 3*t^6.956 + t^6.999 + 3*t^7.007 + 4*t^7.014 + t^7.022 + 2*t^7.03 + t^7.073 + t^7.08 + 2*t^7.088 - t^7.096 + t^7.357 + t^7.379 + t^7.423 + 2*t^7.43 + t^7.438 + t^7.488 + 2*t^7.496 + t^7.504 + t^7.554 + t^7.578 + t^7.772 + 3*t^7.78 + t^7.83 + 5*t^7.838 + 2*t^7.846 + 3*t^7.854 + t^7.889 + 4*t^7.896 + 4*t^7.904 + 8*t^7.912 + 2*t^7.92 + 2*t^7.927 + t^7.962 + 4*t^7.97 + 2*t^7.978 + t^7.986 + t^8.021 + t^8.029 - 2*t^8.036 - 3*t^8.044 - t^8.102 - 2*t^8.118 + t^8.145 + t^8.153 + t^8.161 + t^8.168 + t^8.176 + t^8.254 + t^8.262 + t^8.313 + 3*t^8.32 + 3*t^8.328 + t^8.335 + t^8.378 + 2*t^8.386 + 2*t^8.394 + t^8.402 + t^8.452 - t^8.467 - t^8.526 - t^8.534 - t^8.584 - t^8.592 + t^8.604 + t^8.662 + t^8.67 + t^8.678 + t^8.72 + t^8.728 + 3*t^8.736 + t^8.744 + t^8.751 + t^8.779 + t^8.786 + 3*t^8.794 + 5*t^8.802 + 2*t^8.81 + t^8.817 + t^8.825 + 2*t^8.852 + 5*t^8.86 - 2*t^8.868 + 2*t^8.876 + t^8.911 + 3*t^8.918 - 2*t^8.926 + 2*t^8.934 - 6*t^8.942 + t^8.977 + 2*t^8.985 + 5*t^8.992 - t^4.022/y - t^5.044/y - t^6.058/y - t^6.066/y - t^6.89/y - t^6.948/y - t^6.956/y - t^6.964/y - t^7.022/y - t^7.088/y + t^7.904/y + t^7.962/y + t^7.97/y + (2*t^7.978)/y + t^7.986/y + t^8.036/y - t^8.095/y - t^8.102/y - t^8.11/y + t^8.794/y + t^8.802/y + t^8.81/y + t^8.86/y + (2*t^8.868)/y + t^8.876/y + t^8.926/y + t^8.942/y - (2*t^8.992)/y - t^4.022*y - t^5.044*y - t^6.058*y - t^6.066*y - t^6.89*y - t^6.948*y - t^6.956*y - t^6.964*y - t^7.022*y - t^7.088*y + t^7.904*y + t^7.962*y + t^7.97*y + 2*t^7.978*y + t^7.986*y + t^8.036*y - t^8.095*y - t^8.102*y - t^8.11*y + t^8.794*y + t^8.802*y + t^8.81*y + t^8.86*y + 2*t^8.868*y + t^8.876*y + t^8.926*y + t^8.942*y - 2*t^8.992*y (g3*t^2.036)/(g1^5*g2) + t^2.044/(g1^2*g3^2) + g1^6*g3^6*t^2.868 + (g3^6*t^2.926)/g2 + g1^3*g3^3*t^2.934 + g1^6*g2*t^2.942 + t^3. + g1^5*g3^5*t^3.89 + (g3^5*t^3.948)/(g1*g2) + t^4.022/(g1*g3) + (g3^2*t^4.073)/(g1^10*g2^2) + t^4.08/(g1^7*g2*g3) + t^4.088/(g1^4*g3^4) + (g1*g3^7*t^4.904)/g2 + 2*g1^4*g3^4*t^4.912 + (g3^7*t^4.962)/(g1^5*g2^2) + (3*g3^4*t^4.97)/(g1^2*g2) + 2*g1*g3*t^4.978 + (2*g1^4*g2*t^4.986)/g3^2 + (g3*t^5.036)/(g1^5*g2) + (2*t^5.044)/(g1^2*g3^2) + (g2*g3^11*t^5.386)/g1 + (g1^11*t^5.394)/(g2*g3) + (g1^5*t^5.452)/(g2^2*g3) + (g2^2*g3^5*t^5.46)/g1 + g1^12*g3^12*t^5.736 + (g1^6*g3^12*t^5.794)/g2 + g1^9*g3^9*t^5.802 + g1^12*g2*g3^6*t^5.81 + (g3^12*t^5.852)/g2^2 + (g1^3*g3^9*t^5.86)/g2 + 3*g1^6*g3^6*t^5.868 + g1^9*g2*g3^3*t^5.876 + g1^12*g2^2*t^5.883 + (g3^6*t^5.926)/g2 + 2*g1^3*g3^3*t^5.934 + (g3^6*t^5.985)/(g1^6*g2^2) + (g3^3*t^5.992)/(g1^3*g2) - 3*t^6. + t^6.066/(g1^3*g3^3) - (g2*t^6.074)/g3^6 + (g3^3*t^6.109)/(g1^15*g2^3) + t^6.117/(g1^12*g2^2) + t^6.124/(g1^9*g2*g3^3) + t^6.132/(g1^6*g3^6) + (g2*g3^10*t^6.408)/g1^2 + (g1^10*t^6.416)/(g2*g3^2) + (g1^4*t^6.474)/(g2^2*g3^2) + (g2^2*g3^4*t^6.482)/g1^2 + g1^11*g3^11*t^6.758 + (2*g1^5*g3^11*t^6.816)/g2 + g1^8*g3^8*t^6.824 + g1^11*g2*g3^5*t^6.832 + (g3^11*t^6.874)/(g1*g2^2) + (g1^2*g3^8*t^6.882)/g2 + 3*g1^5*g3^5*t^6.89 + (g3^8*t^6.94)/(g1^4*g2^2) + (3*g3^5*t^6.948)/(g1*g2) + 3*g1^2*g3^2*t^6.956 + (g3^8*t^6.999)/(g1^10*g2^3) + (3*g3^5*t^7.007)/(g1^7*g2^2) + (4*g3^2*t^7.014)/(g1^4*g2) + t^7.022/(g1*g3) + (2*g1^2*g2*t^7.03)/g3^4 + (g3^2*t^7.073)/(g1^10*g2^2) + t^7.08/(g1^7*g2*g3) + (2*t^7.088)/(g1^4*g3^4) - (g2*t^7.096)/(g1*g3^7) + (g3^15*t^7.357)/g1^3 + (g1^15*t^7.379)/g3^3 + (g3^12*t^7.423)/g1^6 + (2*g2*g3^9*t^7.43)/g1^3 + (2*g1^9*t^7.438)/(g2*g3^3) - g2^2*g3^6*t^7.438 + t^7.488/g2^3 + (2*g1^3*t^7.496)/(g2^2*g3^3) - (g1^6*t^7.504)/(g2*g3^6) + (2*g2^2*g3^3*t^7.504)/g1^3 + t^7.554/(g1^3*g2^3*g3^3) + (g2^3*t^7.578)/(g1^3*g3^3) + (g1^7*g3^13*t^7.772)/g2 + 3*g1^10*g3^10*t^7.78 + (g1*g3^13*t^7.83)/g2^2 + (5*g1^4*g3^10*t^7.838)/g2 + 2*g1^7*g3^7*t^7.846 + 3*g1^10*g2*g3^4*t^7.854 + (g3^13*t^7.889)/(g1^5*g2^3) + (4*g3^10*t^7.896)/(g1^2*g2^2) + (4*g1*g3^7*t^7.904)/g2 + 8*g1^4*g3^4*t^7.912 + 2*g1^7*g2*g3*t^7.92 + (2*g1^10*g2^2*t^7.927)/g3^2 + (g3^7*t^7.962)/(g1^5*g2^2) + (4*g3^4*t^7.97)/(g1^2*g2) + 2*g1*g3*t^7.978 + (g1^4*g2*t^7.986)/g3^2 + (g3^7*t^8.021)/(g1^11*g2^3) + (g3^4*t^8.029)/(g1^8*g2^2) - (2*g3*t^8.036)/(g1^5*g2) - (3*t^8.044)/(g1^2*g3^2) - t^8.102/(g1^8*g2*g3^2) - (2*g2*t^8.118)/(g1^2*g3^8) + (g3^4*t^8.145)/(g1^20*g2^4) + (g3*t^8.153)/(g1^17*g2^3) + t^8.161/(g1^14*g2^2*g3^2) + t^8.168/(g1^11*g2*g3^5) + t^8.176/(g1^8*g3^8) + g1^5*g2*g3^17*t^8.254 + (g1^17*g3^5*t^8.262)/g2 + (g3^17*t^8.313)/g1 + (2*g1^11*g3^5*t^8.32)/g2^2 + g1^2*g2*g3^14*t^8.32 + (g1^14*g3^2*t^8.328)/g2 + 2*g1^5*g2^2*g3^11*t^8.328 + (g1^17*t^8.335)/g3 + (g1^5*g3^5*t^8.378)/g2^3 + (g1^8*g3^2*t^8.386)/g2^2 + (g2*g3^11*t^8.386)/g1 + (g1^11*t^8.394)/(g2*g3) + g1^2*g2^2*g3^8*t^8.394 + g1^5*g2^3*g3^5*t^8.402 + (g2*g3^8*t^8.452)/g1^4 + (g1^8*t^8.46)/(g2*g3^4) - (g2^2*g3^5*t^8.46)/g1 - (g1^11*t^8.467)/g3^7 + (g1^2*t^8.518)/(g2^2*g3^4) - (g2*g3^5*t^8.518)/g1^7 - (2*g1^5*t^8.526)/(g2*g3^7) + (g2^2*g3^2*t^8.526)/g1^4 - (g2^3*t^8.534)/(g1*g3) - t^8.584/(g1*g2^2*g3^7) - (g2^2*t^8.592)/(g1^7*g3) + g1^18*g3^18*t^8.604 + (g1^12*g3^18*t^8.662)/g2 + g1^15*g3^15*t^8.67 + g1^18*g2*g3^12*t^8.678 + (g1^6*g3^18*t^8.72)/g2^2 + (g1^9*g3^15*t^8.728)/g2 + 3*g1^12*g3^12*t^8.736 + g1^15*g2*g3^9*t^8.744 + g1^18*g2^2*g3^6*t^8.751 + (g3^18*t^8.779)/g2^3 + (g1^3*g3^15*t^8.786)/g2^2 + (3*g1^6*g3^12*t^8.794)/g2 + 5*g1^9*g3^9*t^8.802 + 2*g1^12*g2*g3^6*t^8.81 + g1^15*g2^2*g3^3*t^8.817 + g1^18*g2^3*t^8.825 + (2*g3^12*t^8.852)/g2^2 + (5*g1^3*g3^9*t^8.86)/g2 - 2*g1^6*g3^6*t^8.868 + 2*g1^9*g2*g3^3*t^8.876 + (g3^12*t^8.911)/(g1^6*g2^3) + (3*g3^9*t^8.918)/(g1^3*g2^2) - (2*g3^6*t^8.926)/g2 + 2*g1^3*g3^3*t^8.934 - 6*g1^6*g2*t^8.942 + (g3^9*t^8.977)/(g1^9*g2^3) + (2*g3^6*t^8.985)/(g1^6*g2^2) + (5*g3^3*t^8.992)/(g1^3*g2) - t^4.022/(g1*g3*y) - t^5.044/(g1^2*g3^2*y) - t^6.058/(g1^6*g2*y) - t^6.066/(g1^3*g3^3*y) - (g1^5*g3^5*t^6.89)/y - (g3^5*t^6.948)/(g1*g2*y) - (g1^2*g3^2*t^6.956)/y - (g1^5*g2*t^6.964)/(g3*y) - t^7.022/(g1*g3*y) - t^7.088/(g1^4*g3^4*y) + (g1*g3^7*t^7.904)/(g2*y) + (g3^7*t^7.962)/(g1^5*g2^2*y) + (g3^4*t^7.97)/(g1^2*g2*y) + (2*g1*g3*t^7.978)/y + (g1^4*g2*t^7.986)/(g3^2*y) + (g3*t^8.036)/(g1^5*g2*y) - (g3*t^8.095)/(g1^11*g2^2*y) - t^8.102/(g1^8*g2*g3^2*y) - t^8.11/(g1^5*g3^5*y) + (g1^6*g3^12*t^8.794)/(g2*y) + (g1^9*g3^9*t^8.802)/y + (g1^12*g2*g3^6*t^8.81)/y + (g1^3*g3^9*t^8.86)/(g2*y) + (2*g1^6*g3^6*t^8.868)/y + (g1^9*g2*g3^3*t^8.876)/y + (g3^6*t^8.926)/(g2*y) + (g1^6*g2*t^8.942)/y - (2*g3^3*t^8.992)/(g1^3*g2*y) - (t^4.022*y)/(g1*g3) - (t^5.044*y)/(g1^2*g3^2) - (t^6.058*y)/(g1^6*g2) - (t^6.066*y)/(g1^3*g3^3) - g1^5*g3^5*t^6.89*y - (g3^5*t^6.948*y)/(g1*g2) - g1^2*g3^2*t^6.956*y - (g1^5*g2*t^6.964*y)/g3 - (t^7.022*y)/(g1*g3) - (t^7.088*y)/(g1^4*g3^4) + (g1*g3^7*t^7.904*y)/g2 + (g3^7*t^7.962*y)/(g1^5*g2^2) + (g3^4*t^7.97*y)/(g1^2*g2) + 2*g1*g3*t^7.978*y + (g1^4*g2*t^7.986*y)/g3^2 + (g3*t^8.036*y)/(g1^5*g2) - (g3*t^8.095*y)/(g1^11*g2^2) - (t^8.102*y)/(g1^8*g2*g3^2) - (t^8.11*y)/(g1^5*g3^5) + (g1^6*g3^12*t^8.794*y)/g2 + g1^9*g3^9*t^8.802*y + g1^12*g2*g3^6*t^8.81*y + (g1^3*g3^9*t^8.86*y)/g2 + 2*g1^6*g3^6*t^8.868*y + g1^9*g2*g3^3*t^8.876*y + (g3^6*t^8.926*y)/g2 + g1^6*g2*t^8.942*y - (2*g3^3*t^8.992*y)/(g1^3*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58604 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4958 1.7272 0.866 [X:[], M:[0.6896, 0.9863], q:[0.507, 0.4795], qb:[0.493, 0.493], phi:[0.3379]] t^2.03 + t^2.07 + 2*t^2.92 + t^2.96 + 2*t^3. + t^3.93 + 2*t^4.01 + t^4.05 + t^4.1 + t^4.14 + 4*t^4.95 + 3*t^4.99 + 5*t^5.03 + 2*t^5.07 + t^5.41 + 2*t^5.45 + t^5.49 + 3*t^5.84 + 2*t^5.88 + 4*t^5.92 + 3*t^5.96 - 2*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail
59487 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4323 1.6293 0.8791 [X:[1.3359], M:[0.8301, 1.0038], q:[0.5827, 0.4205], qb:[0.4173, 0.5872], phi:[0.3321]] t^2.49 + t^2.51 + t^3. + t^3.01 + t^3.02 + t^3.51 + t^4. + t^4.01 + t^4.02 + 2*t^4.51 + t^4.98 + t^4.99 + t^5. + t^5.02 + t^5.03 + t^5.26 + t^5.27 + 2*t^5.5 + t^5.51 + t^5.52 + t^5.54 + t^5.75 + t^5.77 - 2*t^6. - t^4./y - t^4.99/y - t^4.*y - t^4.99*y detail
58869 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.3841 1.5509 0.8925 [X:[1.407], M:[0.7791, 1.1104], q:[0.5815, 0.5059], qb:[0.4185, 0.715], phi:[0.2965]] t^2.34 + t^2.77 + t^3. + t^3.33 + t^3.66 + 2*t^3.89 + t^4.22 + 2*t^4.55 + t^4.67 + 2*t^4.78 + t^5.34 + t^5.44 + 2*t^5.55 + 3*t^5.67 + t^5.9 - 3*t^6. - t^3.89/y - t^4.78/y - t^3.89*y - t^4.78*y detail
60075 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5171 1.7711 0.8566 [X:[], M:[0.6807, 0.9789, 0.6807], q:[0.5, 0.4789], qb:[0.5, 0.4789], phi:[0.3404]] 3*t^2.04 + t^2.87 + 3*t^2.94 + t^3. + t^3.89 + t^4.02 + 6*t^4.08 + 4*t^4.92 + 11*t^4.98 + 4*t^5.04 + 2*t^5.39 + 2*t^5.46 + t^5.75 + 3*t^5.81 + 7*t^5.87 + 4*t^5.94 - 3*t^6. - t^4.02/y - t^5.04/y - t^4.02*y - t^5.04*y detail
59484 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4963 1.7264 0.8667 [X:[], M:[0.7001, 0.9944, 0.976], q:[0.5149, 0.4796], qb:[0.4851, 0.5091], phi:[0.3352]] t^2.01 + t^2.1 + t^2.89 + t^2.93 + t^2.97 + t^2.98 + t^3. + t^3.97 + t^4.01 + t^4.02 + t^4.08 + t^4.11 + t^4.2 + 2*t^4.91 + t^4.94 + 2*t^4.98 + 2*t^4.99 + 2*t^5.01 + t^5.03 + t^5.07 + 2*t^5.08 + t^5.1 + t^5.43 + t^5.44 + t^5.52 + t^5.53 + t^5.79 + t^5.82 + 2*t^5.86 + t^5.88 + t^5.89 + t^5.91 + t^5.93 + t^5.95 + 2*t^5.97 + 2*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47900 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.495 1.7254 0.8664 [M:[0.6707], q:[0.4996, 0.493], qb:[0.5004, 0.4921], phi:[0.3358]] t^2.012 + t^2.015 + t^2.955 + t^2.975 + t^2.98 + t^3. + t^3.022 + t^3.963 + t^3.982 + t^4.007 + t^4.024 + t^4.027 + t^4.03 + t^4.968 + 2*t^4.97 + t^4.987 + 2*t^4.99 + t^4.993 + 2*t^4.995 + t^5.012 + 2*t^5.015 + t^5.035 + t^5.037 + t^5.462 + t^5.464 + t^5.484 + t^5.486 + t^5.911 + t^5.93 + t^5.936 + t^5.95 + 2*t^5.955 + t^5.961 + t^5.975 + 2*t^5.978 + t^5.995 + 2*t^5.997 - 3*t^6. - t^4.007/y - t^5.015/y - t^4.007*y - t^5.015*y detail