Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60075 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5171 | 1.7711 | 0.8566 | [X:[], M:[0.6807, 0.9789, 0.6807], q:[0.5, 0.4789], qb:[0.5, 0.4789], phi:[0.3404]] | [X:[], M:[[-5, -1, 1], [3, 0, 3], [1, 1, -5]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | 3*t^2.04 + t^2.87 + 3*t^2.94 + t^3. + t^3.89 + t^4.02 + 6*t^4.08 + 4*t^4.92 + 11*t^4.98 + 4*t^5.04 + 2*t^5.39 + 2*t^5.46 + t^5.75 + 3*t^5.81 + 7*t^5.87 + 4*t^5.94 - 3*t^6. + t^6.06 + 10*t^6.13 + 2*t^6.42 + 2*t^6.48 + t^6.77 + 3*t^6.83 + 2*t^6.89 + 10*t^6.96 + 22*t^7.02 + 7*t^7.08 + 2*t^7.37 + 6*t^7.44 + 6*t^7.5 + 2*t^7.56 + 5*t^7.79 + 13*t^7.85 + 27*t^7.92 + 11*t^7.98 - 9*t^8.04 - 2*t^8.11 + 15*t^8.17 + 2*t^8.27 + 8*t^8.33 + 6*t^8.39 + 2*t^8.46 - 2*t^8.58 + t^8.62 + 3*t^8.68 + 7*t^8.75 + 15*t^8.81 + 7*t^8.87 - 8*t^8.94 - t^4.02/y - t^5.04/y - (3*t^6.06)/y - t^6.89/y - (3*t^6.96)/y - t^7.02/y + (2*t^7.92)/y + (9*t^7.98)/y + (2*t^8.04)/y - (6*t^8.11)/y + (3*t^8.81)/y + (4*t^8.87)/y + (2*t^8.94)/y - t^4.02*y - t^5.04*y - 3*t^6.06*y - t^6.89*y - 3*t^6.96*y - t^7.02*y + 2*t^7.92*y + 9*t^7.98*y + 2*t^8.04*y - 6*t^8.11*y + 3*t^8.81*y + 4*t^8.87*y + 2*t^8.94*y | (g1*g2*t^2.04)/g3^5 + t^2.04/(g1^2*g3^2) + (g3*t^2.04)/(g1^5*g2) + g1^6*g3^6*t^2.87 + g1^6*g2*t^2.94 + g1^3*g3^3*t^2.94 + (g3^6*t^2.94)/g2 + t^3. + g1^5*g3^5*t^3.89 + t^4.02/(g1*g3) + (g1^2*g2^2*t^4.08)/g3^10 + (g2*t^4.08)/(g1*g3^7) + (2*t^4.08)/(g1^4*g3^4) + t^4.08/(g1^7*g2*g3) + (g3^2*t^4.08)/(g1^10*g2^2) + g1^7*g2*g3*t^4.92 + 2*g1^4*g3^4*t^4.92 + (g1*g3^7*t^4.92)/g2 + (g1^7*g2^2*t^4.98)/g3^5 + (3*g1^4*g2*t^4.98)/g3^2 + 3*g1*g3*t^4.98 + (3*g3^4*t^4.98)/(g1^2*g2) + (g3^7*t^4.98)/(g1^5*g2^2) + (g1*g2*t^5.04)/g3^5 + (2*t^5.04)/(g1^2*g3^2) + (g3*t^5.04)/(g1^5*g2) + (g1^11*t^5.39)/(g2*g3) + (g2*g3^11*t^5.39)/g1 + (g1^5*t^5.46)/(g2^2*g3) + (g2^2*g3^5*t^5.46)/g1 + g1^12*g3^12*t^5.75 + g1^12*g2*g3^6*t^5.81 + g1^9*g3^9*t^5.81 + (g1^6*g3^12*t^5.81)/g2 + g1^12*g2^2*t^5.87 + g1^9*g2*g3^3*t^5.87 + 3*g1^6*g3^6*t^5.87 + (g1^3*g3^9*t^5.87)/g2 + (g3^12*t^5.87)/g2^2 + g1^6*g2*t^5.94 + 2*g1^3*g3^3*t^5.94 + (g3^6*t^5.94)/g2 - 3*t^6. + t^6.06/(g1^3*g3^3) + t^6.13/(g1^12*g2^2) + (g1^3*g2^3*t^6.13)/g3^15 + (g2^2*t^6.13)/g3^12 + (2*g2*t^6.13)/(g1^3*g3^9) + (2*t^6.13)/(g1^6*g3^6) + (2*t^6.13)/(g1^9*g2*g3^3) + (g3^3*t^6.13)/(g1^15*g2^3) + (g1^10*t^6.42)/(g2*g3^2) + (g2*g3^10*t^6.42)/g1^2 + (g1^4*t^6.48)/(g2^2*g3^2) + (g2^2*g3^4*t^6.48)/g1^2 + g1^11*g3^11*t^6.77 + g1^11*g2*g3^5*t^6.83 + g1^8*g3^8*t^6.83 + (g1^5*g3^11*t^6.83)/g2 + 2*g1^5*g3^5*t^6.89 + (g1^8*g2^2*t^6.96)/g3^4 + (2*g1^5*g2*t^6.96)/g3 + 4*g1^2*g3^2*t^6.96 + (2*g3^5*t^6.96)/(g1*g2) + (g3^8*t^6.96)/(g1^4*g2^2) + (g1^8*g2^3*t^7.02)/g3^10 + (3*g1^5*g2^2*t^7.02)/g3^7 + (5*g1^2*g2*t^7.02)/g3^4 + (4*t^7.02)/(g1*g3) + (5*g3^2*t^7.02)/(g1^4*g2) + (3*g3^5*t^7.02)/(g1^7*g2^2) + (g3^8*t^7.02)/(g1^10*g2^3) + (g1^2*g2^2*t^7.08)/g3^10 + (g2*t^7.08)/(g1*g3^7) + (3*t^7.08)/(g1^4*g3^4) + t^7.08/(g1^7*g2*g3) + (g3^2*t^7.08)/(g1^10*g2^2) + (g1^15*t^7.37)/g3^3 + (g3^15*t^7.37)/g1^3 + (g1^12*t^7.44)/g3^6 + (2*g1^9*t^7.44)/(g2*g3^3) + (2*g2*g3^9*t^7.44)/g1^3 + (g3^12*t^7.44)/g1^6 + t^7.5/g2^3 + g2^3*t^7.5 + (2*g1^3*t^7.5)/(g2^2*g3^3) + (2*g2^2*g3^3*t^7.5)/g1^3 + t^7.56/(g1^3*g2^3*g3^3) + (g2^3*t^7.56)/(g1^3*g3^3) + g1^13*g2*g3^7*t^7.79 + 3*g1^10*g3^10*t^7.79 + (g1^7*g3^13*t^7.79)/g2 + g1^13*g2^2*g3*t^7.85 + 4*g1^10*g2*g3^4*t^7.85 + 3*g1^7*g3^7*t^7.85 + (4*g1^4*g3^10*t^7.85)/g2 + (g1*g3^13*t^7.85)/g2^2 + (g1^13*g2^3*t^7.92)/g3^5 + (3*g1^10*g2^2*t^7.92)/g3^2 + 5*g1^7*g2*g3*t^7.92 + 9*g1^4*g3^4*t^7.92 + (5*g1*g3^7*t^7.92)/g2 + (3*g3^10*t^7.92)/(g1^2*g2^2) + (g3^13*t^7.92)/(g1^5*g2^3) + (g1^7*g2^2*t^7.98)/g3^5 + (3*g1^4*g2*t^7.98)/g3^2 + 3*g1*g3*t^7.98 + (3*g3^4*t^7.98)/(g1^2*g2) + (g3^7*t^7.98)/(g1^5*g2^2) - (3*g1*g2*t^8.04)/g3^5 - (3*t^8.04)/(g1^2*g3^2) - (3*g3*t^8.04)/(g1^5*g2) - (g2*t^8.11)/(g1^2*g3^8) - t^8.11/(g1^8*g2*g3^2) + (g1^4*g2^4*t^8.17)/g3^20 + (g1*g2^3*t^8.17)/g3^17 + (2*g2^2*t^8.17)/(g1^2*g3^14) + (2*g2*t^8.17)/(g1^5*g3^11) + (3*t^8.17)/(g1^8*g3^8) + (2*t^8.17)/(g1^11*g2*g3^5) + (2*t^8.17)/(g1^14*g2^2*g3^2) + (g3*t^8.17)/(g1^17*g2^3) + (g3^4*t^8.17)/(g1^20*g2^4) + (g1^17*g3^5*t^8.27)/g2 + g1^5*g2*g3^17*t^8.27 + (g1^17*t^8.33)/g3 + (g1^14*g3^2*t^8.33)/g2 + (2*g1^11*g3^5*t^8.33)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.33 + g1^2*g2*g3^14*t^8.33 + (g3^17*t^8.33)/g1 + (g1^11*t^8.39)/(g2*g3) + (g1^8*g3^2*t^8.39)/g2^2 + (g1^5*g3^5*t^8.39)/g2^3 + g1^5*g2^3*g3^5*t^8.39 + g1^2*g2^2*g3^8*t^8.39 + (g2*g3^11*t^8.39)/g1 + (g1^8*t^8.46)/(g2*g3^4) + (g2*g3^8*t^8.46)/g1^4 - (g1^5*t^8.52)/(g2*g3^7) + (g1^2*t^8.52)/(g2^2*g3^4) + (g2^2*g3^2*t^8.52)/g1^4 - (g2*g3^5*t^8.52)/g1^7 - t^8.58/(g1*g2^2*g3^7) - (g2^2*t^8.58)/(g1^7*g3) + g1^18*g3^18*t^8.62 + g1^18*g2*g3^12*t^8.68 + g1^15*g3^15*t^8.68 + (g1^12*g3^18*t^8.68)/g2 + g1^18*g2^2*g3^6*t^8.75 + g1^15*g2*g3^9*t^8.75 + 3*g1^12*g3^12*t^8.75 + (g1^9*g3^15*t^8.75)/g2 + (g1^6*g3^18*t^8.75)/g2^2 + g1^18*g2^3*t^8.81 + g1^15*g2^2*g3^3*t^8.81 + 3*g1^12*g2*g3^6*t^8.81 + 5*g1^9*g3^9*t^8.81 + (3*g1^6*g3^12*t^8.81)/g2 + (g1^3*g3^15*t^8.81)/g2^2 + (g3^18*t^8.81)/g2^3 + g1^12*g2^2*t^8.87 + 3*g1^9*g2*g3^3*t^8.87 - g1^6*g3^6*t^8.87 + (3*g1^3*g3^9*t^8.87)/g2 + (g3^12*t^8.87)/g2^2 - 4*g1^6*g2*t^8.94 - (4*g3^6*t^8.94)/g2 - t^4.02/(g1*g3*y) - t^5.04/(g1^2*g3^2*y) - t^6.06/(g1^6*g2*y) - (g2*t^6.06)/(g3^6*y) - t^6.06/(g1^3*g3^3*y) - (g1^5*g3^5*t^6.89)/y - (g1^5*g2*t^6.96)/(g3*y) - (g1^2*g3^2*t^6.96)/y - (g3^5*t^6.96)/(g1*g2*y) - t^7.02/(g1*g3*y) + (g1^7*g2*g3*t^7.92)/y + (g1*g3^7*t^7.92)/(g2*y) + (g1^7*g2^2*t^7.98)/(g3^5*y) + (2*g1^4*g2*t^7.98)/(g3^2*y) + (3*g1*g3*t^7.98)/y + (2*g3^4*t^7.98)/(g1^2*g2*y) + (g3^7*t^7.98)/(g1^5*g2^2*y) + (g1*g2*t^8.04)/(g3^5*y) + (g3*t^8.04)/(g1^5*g2*y) - (g1*g2^2*t^8.11)/(g3^11*y) - (g2*t^8.11)/(g1^2*g3^8*y) - (2*t^8.11)/(g1^5*g3^5*y) - t^8.11/(g1^8*g2*g3^2*y) - (g3*t^8.11)/(g1^11*g2^2*y) + (g1^12*g2*g3^6*t^8.81)/y + (g1^9*g3^9*t^8.81)/y + (g1^6*g3^12*t^8.81)/(g2*y) + (g1^9*g2*g3^3*t^8.87)/y + (2*g1^6*g3^6*t^8.87)/y + (g1^3*g3^9*t^8.87)/(g2*y) + (g1^6*g2*t^8.94)/y + (g3^6*t^8.94)/(g2*y) - (t^4.02*y)/(g1*g3) - (t^5.04*y)/(g1^2*g3^2) - (t^6.06*y)/(g1^6*g2) - (g2*t^6.06*y)/g3^6 - (t^6.06*y)/(g1^3*g3^3) - g1^5*g3^5*t^6.89*y - (g1^5*g2*t^6.96*y)/g3 - g1^2*g3^2*t^6.96*y - (g3^5*t^6.96*y)/(g1*g2) - (t^7.02*y)/(g1*g3) + g1^7*g2*g3*t^7.92*y + (g1*g3^7*t^7.92*y)/g2 + (g1^7*g2^2*t^7.98*y)/g3^5 + (2*g1^4*g2*t^7.98*y)/g3^2 + 3*g1*g3*t^7.98*y + (2*g3^4*t^7.98*y)/(g1^2*g2) + (g3^7*t^7.98*y)/(g1^5*g2^2) + (g1*g2*t^8.04*y)/g3^5 + (g3*t^8.04*y)/(g1^5*g2) - (g1*g2^2*t^8.11*y)/g3^11 - (g2*t^8.11*y)/(g1^2*g3^8) - (2*t^8.11*y)/(g1^5*g3^5) - (t^8.11*y)/(g1^8*g2*g3^2) - (g3*t^8.11*y)/(g1^11*g2^2) + g1^12*g2*g3^6*t^8.81*y + g1^9*g3^9*t^8.81*y + (g1^6*g3^12*t^8.81*y)/g2 + g1^9*g2*g3^3*t^8.87*y + 2*g1^6*g3^6*t^8.87*y + (g1^3*g3^9*t^8.87*y)/g2 + g1^6*g2*t^8.94*y + (g3^6*t^8.94*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57418 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4963 | 1.7307 | 0.8646 | [M:[0.6788, 0.978], q:[0.4987, 0.4793], qb:[0.5013, 0.4767], phi:[0.3407]] | t^2.036 + t^2.044 + t^2.868 + t^2.926 + t^2.934 + t^2.942 + t^3. + t^3.89 + t^3.948 + t^4.022 + t^4.073 + t^4.08 + t^4.088 + t^4.904 + 2*t^4.912 + t^4.962 + 3*t^4.97 + 2*t^4.978 + 2*t^4.986 + t^5.036 + 2*t^5.044 + t^5.386 + t^5.394 + t^5.452 + t^5.46 + t^5.736 + t^5.794 + t^5.802 + t^5.81 + t^5.852 + t^5.86 + 3*t^5.868 + t^5.876 + t^5.883 + t^5.926 + 2*t^5.934 + t^5.985 + t^5.992 - 3*t^6. - t^4.022/y - t^5.044/y - t^4.022*y - t^5.044*y | detail |