Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59484 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4963 1.7264 0.8667 [X:[], M:[0.7001, 0.9944, 0.976], q:[0.5149, 0.4796], qb:[0.4851, 0.5091], phi:[0.3352]] [X:[], M:[[-5, -1, 1], [3, 0, 3], [0, 1, -6]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.01 + t^2.1 + t^2.89 + t^2.93 + t^2.97 + t^2.98 + t^3. + t^3.97 + t^4.01 + t^4.02 + t^4.08 + t^4.11 + t^4.2 + 2*t^4.91 + t^4.94 + 2*t^4.98 + 2*t^4.99 + 2*t^5.01 + t^5.03 + t^5.07 + 2*t^5.08 + t^5.1 + t^5.43 + t^5.44 + t^5.52 + t^5.53 + t^5.79 + t^5.82 + 2*t^5.86 + t^5.88 + t^5.89 + t^5.91 + t^5.93 + t^5.95 + 2*t^5.97 + 2*t^5.98 - 3*t^6. + t^6.02 + t^6.03 + t^6.09 + t^6.12 + t^6.18 + t^6.21 + t^6.3 + t^6.43 + t^6.45 + t^6.52 + t^6.54 + t^6.87 + t^6.9 + 2*t^6.92 + t^6.94 + 2*t^6.95 + 3*t^6.97 + 3*t^6.99 + 2*t^7.01 + 2*t^7.02 + 2*t^7.04 + t^7.06 + 2*t^7.08 + 3*t^7.09 + t^7.11 + t^7.13 + t^7.17 + 2*t^7.18 + t^7.2 + t^7.33 + t^7.38 + t^7.44 + 2*t^7.45 - t^7.46 + 2*t^7.53 + 2*t^7.55 + t^7.6 + t^7.62 + t^7.63 + t^7.65 + 2*t^7.8 + 2*t^7.83 + 4*t^7.87 + 2*t^7.89 + 3*t^7.91 + 2*t^7.92 + 3*t^7.94 + 3*t^7.96 + 6*t^7.98 + 3*t^7.99 - t^8.01 + 2*t^8.03 + 4*t^8.05 + 2*t^8.07 + 2*t^8.08 - 2*t^8.1 - t^8.12 + t^8.13 + t^8.16 + t^8.19 + t^8.22 + t^8.28 + t^8.31 + t^8.32 + t^8.34 + t^8.39 + t^8.4 + 3*t^8.41 + 2*t^8.43 + t^8.45 + 2*t^8.5 + t^8.52 + t^8.53 - t^8.57 + t^8.68 + t^8.72 + 2*t^8.75 + t^8.77 + t^8.78 + t^8.79 + t^8.81 + t^8.83 + 2*t^8.84 + 2*t^8.86 + 3*t^8.88 - 4*t^8.89 + t^8.9 + 2*t^8.91 + t^8.92 + t^8.93 + 4*t^8.95 + t^8.96 - 2*t^8.97 + 2*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.11/y - t^6.9/y - t^6.93/y - t^6.97/y - t^6.99/y - t^7.01/y - t^7.02/y + t^7.91/y + (2*t^7.99)/y + t^8.07/y + t^8.08/y + t^8.1/y - t^8.12/y - t^8.21/y + t^8.82/y + t^8.86/y + t^8.88/y + (2*t^8.89)/y + t^8.93/y - t^8.94/y + t^8.95/y + t^8.97/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.11*y - t^6.9*y - t^6.93*y - t^6.97*y - t^6.99*y - t^7.01*y - t^7.02*y + t^7.91*y + 2*t^7.99*y + t^8.07*y + t^8.08*y + t^8.1*y - t^8.12*y - t^8.21*y + t^8.82*y + t^8.86*y + t^8.88*y + 2*t^8.89*y + t^8.93*y - t^8.94*y + t^8.95*y + t^8.97*y t^2.01/(g1^2*g3^2) + (g3*t^2.1)/(g1^5*g2) + g1^6*g2*t^2.89 + (g2*t^2.93)/g3^6 + g1^6*g3^6*t^2.97 + g1^3*g3^3*t^2.98 + t^3. + g1^5*g3^5*t^3.97 + t^4.01/(g1*g3) + t^4.02/(g1^4*g3^4) + (g3^5*t^4.08)/(g1*g2) + t^4.11/(g1^7*g2*g3) + (g3^2*t^4.2)/(g1^10*g2^2) + (2*g1^4*g2*t^4.91)/g3^2 + (g2*t^4.94)/(g1^2*g3^8) + 2*g1^4*g3^4*t^4.98 + 2*g1*g3*t^4.99 + (2*t^5.01)/(g1^2*g3^2) + t^5.03/(g1^5*g3^5) + (g1*g3^7*t^5.07)/g2 + (2*g3^4*t^5.08)/(g1^2*g2) + (g3*t^5.1)/(g1^5*g2) + (g1^11*t^5.43)/(g2*g3) + (g2^2*g3^5*t^5.44)/g1 + (g2*g3^11*t^5.52)/g1 + (g1^5*t^5.53)/(g2^2*g3) + g1^12*g2^2*t^5.79 + (g1^6*g2^2*t^5.82)/g3^6 + (g2^2*t^5.86)/g3^12 + g1^12*g2*g3^6*t^5.86 + g1^9*g2*g3^3*t^5.88 + g1^6*g2*t^5.89 + (g1^3*g2*t^5.91)/g3^3 + g1^12*g3^12*t^5.93 + g1^9*g3^9*t^5.95 + 2*g1^6*g3^6*t^5.97 + 2*g1^3*g3^3*t^5.98 - 3*t^6. + t^6.02/(g1^3*g3^3) + t^6.03/(g1^6*g3^6) + (g3^3*t^6.09)/(g1^3*g2) + t^6.12/(g1^9*g2*g3^3) + (g3^6*t^6.18)/(g1^6*g2^2) + t^6.21/(g1^12*g2^2) + (g3^3*t^6.3)/(g1^15*g2^3) + (g1^10*t^6.43)/(g2*g3^2) + (g2^2*g3^4*t^6.45)/g1^2 + (g2*g3^10*t^6.52)/g1^2 + (g1^4*t^6.54)/(g2^2*g3^2) + g1^11*g2*g3^5*t^6.87 + (g1^5*g2*t^6.9)/g3 + (2*g1^2*g2*t^6.92)/g3^4 + g1^11*g3^11*t^6.94 + (g2*t^6.95)/(g1^4*g3^10) + g1^8*g3^8*t^6.95 + 3*g1^5*g3^5*t^6.97 + 3*g1^2*g3^2*t^6.99 + (2*t^7.01)/(g1*g3) + (2*t^7.02)/(g1^4*g3^4) + t^7.04/(g1^7*g3^7) + (g1^5*g3^11*t^7.04)/g2 + (g1^2*g3^8*t^7.06)/g2 + (2*g3^5*t^7.08)/(g1*g2) + (3*g3^2*t^7.09)/(g1^4*g2) + t^7.11/(g1^7*g2*g3) + t^7.13/(g1^10*g2*g3^4) + (g3^8*t^7.17)/(g1^4*g2^2) + (2*g3^5*t^7.18)/(g1^7*g2^2) + (g3^2*t^7.2)/(g1^10*g2^2) + (g1^15*t^7.33)/g3^3 + (g2^3*t^7.38)/(g1^3*g3^3) + (2*g1^9*t^7.44)/(g2*g3^3) - g2^2*g3^6*t^7.44 + (2*g2^2*g3^3*t^7.45)/g1^3 - (g1^6*t^7.46)/(g2*g3^6) + (2*g2*g3^9*t^7.53)/g1^3 + (2*g1^3*t^7.55)/(g2^2*g3^3) + (g3^15*t^7.6)/g1^3 + (g3^12*t^7.62)/g1^6 + t^7.63/g2^3 + t^7.65/(g1^3*g2^3*g3^3) + (2*g1^10*g2^2*t^7.8)/g3^2 + (2*g1^4*g2^2*t^7.83)/g3^8 + (g2^2*t^7.87)/(g1^2*g3^14) + 3*g1^10*g2*g3^4*t^7.87 + 2*g1^7*g2*g3*t^7.89 + (3*g1^4*g2*t^7.91)/g3^2 + (2*g1*g2*t^7.92)/g3^5 + 3*g1^10*g3^10*t^7.94 + (g2*t^7.96)/(g1^5*g3^11) + 2*g1^7*g3^7*t^7.96 + 6*g1^4*g3^4*t^7.98 + 3*g1*g3*t^7.99 - t^8.01/(g1^2*g3^2) + t^8.03/(g1^5*g3^5) + (g1^7*g3^13*t^8.03)/g2 + t^8.05/(g1^8*g3^8) + (3*g1^4*g3^10*t^8.05)/g2 + (2*g1*g3^7*t^8.07)/g2 + (2*g3^4*t^8.08)/(g1^2*g2) - (2*g3*t^8.1)/(g1^5*g2) - t^8.12/(g1^8*g2*g3^2) + t^8.13/(g1^11*g2*g3^5) + (g3^10*t^8.16)/(g1^2*g2^2) + (g3^4*t^8.19)/(g1^8*g2^2) + t^8.22/(g1^14*g2^2*g3^2) + (g3^7*t^8.28)/(g1^11*g2^3) + (g3*t^8.31)/(g1^17*g2^3) + (g1^17*t^8.32)/g3 + g1^5*g2^3*g3^5*t^8.34 + (g1^17*g3^5*t^8.39)/g2 + (g3^4*t^8.4)/(g1^20*g2^4) + (g1^14*g3^2*t^8.41)/g2 + 2*g1^5*g2^2*g3^11*t^8.41 + (g1^11*t^8.43)/(g2*g3) + g1^2*g2^2*g3^8*t^8.43 + (g1^8*t^8.45)/(g2*g3^4) - (g1^5*t^8.46)/(g2*g3^7) + (g2^2*g3^2*t^8.46)/g1^4 - (g2^2*t^8.48)/(g1^7*g3) + g1^5*g2*g3^17*t^8.48 + (g1^11*g3^5*t^8.5)/g2^2 + g1^2*g2*g3^14*t^8.5 + (g1^8*g3^2*t^8.52)/g2^2 + (g2*g3^8*t^8.53)/g1^4 + (g1^2*t^8.55)/(g2^2*g3^4) - (g2*g3^5*t^8.55)/g1^7 - t^8.57/(g1*g2^2*g3^7) + g1^18*g2^3*t^8.68 + (g1^12*g2^3*t^8.72)/g3^6 + (g1^6*g2^3*t^8.75)/g3^12 + g1^18*g2^2*g3^6*t^8.75 + g1^15*g2^2*g3^3*t^8.77 + (g2^3*t^8.78)/g3^18 + g1^12*g2^2*t^8.79 + (g1^9*g2^2*t^8.81)/g3^3 + g1^18*g2*g3^12*t^8.83 + (g1^3*g2^2*t^8.84)/g3^9 + g1^15*g2*g3^9*t^8.84 + 2*g1^12*g2*g3^6*t^8.86 + 3*g1^9*g2*g3^3*t^8.88 - 4*g1^6*g2*t^8.89 + g1^18*g3^18*t^8.9 + (2*g1^3*g2*t^8.91)/g3^3 + g1^15*g3^15*t^8.92 - (g2*t^8.93)/g3^6 + 2*g1^12*g3^12*t^8.93 + 4*g1^9*g3^9*t^8.95 + (g2*t^8.96)/(g1^6*g3^12) - 2*g1^6*g3^6*t^8.97 + 2*g1^3*g3^3*t^8.98 - t^4.01/(g1*g3*y) - t^5.01/(g1^2*g3^2*y) - t^6.02/(g1^3*g3^3*y) - t^6.11/(g1^6*g2*y) - (g1^5*g2*t^6.9)/(g3*y) - (g2*t^6.93)/(g1*g3^7*y) - (g1^5*g3^5*t^6.97)/y - (g1^2*g3^2*t^6.99)/y - t^7.01/(g1*g3*y) - t^7.02/(g1^4*g3^4*y) + (g1^4*g2*t^7.91)/(g3^2*y) + (2*g1*g3*t^7.99)/y + (g1*g3^7*t^8.07)/(g2*y) + (g3^4*t^8.08)/(g1^2*g2*y) + (g3*t^8.1)/(g1^5*g2*y) - t^8.12/(g1^8*g2*g3^2*y) - (g3*t^8.21)/(g1^11*g2^2*y) + (g1^6*g2^2*t^8.82)/(g3^6*y) + (g1^12*g2*g3^6*t^8.86)/y + (g1^9*g2*g3^3*t^8.88)/y + (2*g1^6*g2*t^8.89)/y + (g2*t^8.93)/(g3^6*y) - (g2*t^8.94)/(g1^3*g3^9*y) + (g1^9*g3^9*t^8.95)/y + (g1^6*g3^6*t^8.97)/y - (t^4.01*y)/(g1*g3) - (t^5.01*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^3*g3^3) - (t^6.11*y)/(g1^6*g2) - (g1^5*g2*t^6.9*y)/g3 - (g2*t^6.93*y)/(g1*g3^7) - g1^5*g3^5*t^6.97*y - g1^2*g3^2*t^6.99*y - (t^7.01*y)/(g1*g3) - (t^7.02*y)/(g1^4*g3^4) + (g1^4*g2*t^7.91*y)/g3^2 + 2*g1*g3*t^7.99*y + (g1*g3^7*t^8.07*y)/g2 + (g3^4*t^8.08*y)/(g1^2*g2) + (g3*t^8.1*y)/(g1^5*g2) - (t^8.12*y)/(g1^8*g2*g3^2) - (g3*t^8.21*y)/(g1^11*g2^2) + (g1^6*g2^2*t^8.82*y)/g3^6 + g1^12*g2*g3^6*t^8.86*y + g1^9*g2*g3^3*t^8.88*y + 2*g1^6*g2*t^8.89*y + (g2*t^8.93*y)/g3^6 - (g2*t^8.94*y)/(g1^3*g3^9) + g1^9*g3^9*t^8.95*y + g1^6*g3^6*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57418 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4963 1.7307 0.8646 [M:[0.6788, 0.978], q:[0.4987, 0.4793], qb:[0.5013, 0.4767], phi:[0.3407]] t^2.036 + t^2.044 + t^2.868 + t^2.926 + t^2.934 + t^2.942 + t^3. + t^3.89 + t^3.948 + t^4.022 + t^4.073 + t^4.08 + t^4.088 + t^4.904 + 2*t^4.912 + t^4.962 + 3*t^4.97 + 2*t^4.978 + 2*t^4.986 + t^5.036 + 2*t^5.044 + t^5.386 + t^5.394 + t^5.452 + t^5.46 + t^5.736 + t^5.794 + t^5.802 + t^5.81 + t^5.852 + t^5.86 + 3*t^5.868 + t^5.876 + t^5.883 + t^5.926 + 2*t^5.934 + t^5.985 + t^5.992 - 3*t^6. - t^4.022/y - t^5.044/y - t^4.022*y - t^5.044*y detail