Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58423 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 1.4551 1.6489 0.8825 [X:[], M:[0.9836, 1.3224, 0.9818], q:[0.51, 0.4736], qb:[0.5082, 0.4753], phi:[0.3388]] [X:[], M:[[0, -3, 3], [0, -2, 2], [1, 6, 0]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -4 t^2.85 + 3*t^2.95 + t^2.96 + t^3.86 + t^3.96 + 2*t^3.97 + t^4.07 + t^4.88 + t^4.98 + t^4.99 + t^5.09 + 2*t^5.39 + t^5.49 + t^5.5 + t^5.69 + 2*t^5.79 + 2*t^5.8 + 2*t^5.89 + 4*t^5.9 + 2*t^5.91 - 4*t^6. - t^6.1 - t^6.11 + t^6.4 + t^6.41 + 2*t^6.51 + t^6.71 + 5*t^6.81 + 2*t^6.82 + 4*t^6.91 + 6*t^6.92 + t^6.93 + t^7.03 - t^7.12 - t^7.13 + t^7.31 + t^7.33 + t^7.62 + t^7.64 + 2*t^7.73 + 5*t^7.83 + 3*t^7.84 + 2*t^7.92 + 6*t^7.93 + 3*t^7.94 + t^8.03 + 3*t^8.04 - t^8.13 + 2*t^8.24 + t^8.33 + 6*t^8.34 + t^8.35 - t^8.43 + t^8.44 + 2*t^8.45 - 2*t^8.54 - 3*t^8.55 + 2*t^8.64 + 5*t^8.74 + 3*t^8.75 + t^8.76 + 6*t^8.84 + 2*t^8.85 + 3*t^8.86 + t^8.87 + t^8.94 - 9*t^8.95 - 4*t^8.96 - t^4.02/y - t^5.03/y - t^6.86/y - (2*t^6.96)/y - (2*t^6.97)/y - t^7.88/y - (3*t^7.98)/y - t^7.99/y + (2*t^8.79)/y + (2*t^8.8)/y + t^8.89/y + (3*t^8.9)/y + t^8.91/y - t^8.99/y - t^4.02*y - t^5.03*y - t^6.86*y - 2*t^6.96*y - 2*t^6.97*y - t^7.88*y - 3*t^7.98*y - t^7.99*y + 2*t^8.79*y + 2*t^8.8*y + t^8.89*y + 3*t^8.9*y + t^8.91*y - t^8.99*y g1*g3^6*t^2.85 + 2*g1*g2^6*t^2.95 + (g3^3*t^2.95)/g2^3 + (g3^6*t^2.96)/(g1*g2^12) + g1*g2*g3^5*t^3.86 + (g1*g2^7*t^3.96)/g3 + (g3^2*t^3.97)/g2^2 + (g3^5*t^3.97)/(g1*g2^11) + t^4.07/(g1*g2^5*g3) + g1*g2^2*g3^4*t^4.88 + (g1*g2^8*t^4.98)/g3^2 + (g3^4*t^4.99)/(g1*g2^10) + t^5.09/(g1*g2^4*g3^2) + (g1*t^5.39)/(g2^11*g3) + g2^7*g3^11*t^5.39 + g2^13*g3^5*t^5.49 + t^5.5/(g1*g2^23*g3) + g1^2*g3^12*t^5.69 + 2*g1^2*g2^6*g3^6*t^5.79 + (g1*g3^9*t^5.8)/g2^3 + (g3^12*t^5.8)/g2^12 + 2*g1^2*g2^12*t^5.89 + 2*g1*g2^3*g3^3*t^5.9 + (2*g3^6*t^5.9)/g2^6 + (g3^9*t^5.91)/(g1*g2^15) + (g3^12*t^5.91)/(g1^2*g2^24) - 4*t^6. - (g2^6*t^6.1)/g3^6 - t^6.11/(g1^2*g2^12) + (g1*t^6.4)/(g2^10*g3^2) + g2^8*g3^10*t^6.41 + t^6.51/(g1*g2^22*g3^2) + g2^14*g3^4*t^6.51 + g1^2*g2*g3^11*t^6.71 + 3*g1^2*g2^7*g3^5*t^6.81 + (2*g1*g3^8*t^6.81)/g2^2 + (2*g3^11*t^6.82)/g2^11 + (g1^2*g2^13*t^6.91)/g3 + 3*g1*g2^4*g3^2*t^6.91 + (4*g3^5*t^6.92)/g2^5 + (2*g3^8*t^6.92)/(g1*g2^14) + (g3^11*t^6.93)/(g1^2*g2^23) - (g2*t^7.02)/g3 + (g3^2*t^7.02)/(g1*g2^8) + (g3^5*t^7.03)/(g1^2*g2^17) - (g2^7*t^7.12)/g3^7 - t^7.13/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.31)/g3^3 + g2^3*g3^15*t^7.33 + (g1*t^7.42)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.42 - t^7.43/g2^18 + g2^9*g3^9*t^7.43 - t^7.52/(g2^12*g3^6) + g2^15*g3^3*t^7.52 + t^7.53/(g1*g2^21*g3^3) - (g2^6*g3^6*t^7.53)/g1 + (g2^21*t^7.62)/g3^3 + t^7.64/(g1^3*g2^33*g3^3) + 2*g1^2*g2^2*g3^10*t^7.73 + 4*g1^2*g2^8*g3^4*t^7.83 + (g1*g3^7*t^7.83)/g2 + (3*g3^10*t^7.84)/g2^10 + (2*g1^2*g2^14*t^7.92)/g3^2 + g1*g2^5*g3*t^7.93 + (5*g3^4*t^7.93)/g2^4 + (g3^7*t^7.94)/(g1*g2^13) + (2*g3^10*t^7.94)/(g1^2*g2^22) + (g2^2*t^8.03)/g3^2 + (g3*t^8.04)/(g1*g2^7) + (2*g3^4*t^8.04)/(g1^2*g2^16) - (g2^8*t^8.13)/g3^8 + (g1^2*g3^5*t^8.24)/g2^11 + g1*g2^7*g3^17*t^8.24 + (g1^2*t^8.33)/(g2^5*g3) + (g1*g3^2*t^8.34)/g2^14 + (2*g3^5*t^8.34)/g2^23 + 2*g1*g2^13*g3^11*t^8.34 + g2^4*g3^14*t^8.34 + (g3^17*t^8.35)/(g1*g2^5) - (g1^2*g2*t^8.43)/g3^7 + g2^10*g3^8*t^8.44 + (g3^2*t^8.45)/(g1*g2^26) + (g3^5*t^8.45)/(g1^2*g2^35) - (2*t^8.54)/(g2^11*g3^7) - (g1*g2^25*t^8.54)/g3 + g1^3*g3^18*t^8.54 - t^8.55/(g1^2*g2^29*g3) - (2*g2^7*g3^5*t^8.55)/g1 - (g2^13*t^8.64)/(g1*g3) + 2*g1^3*g2^6*g3^12*t^8.64 + (g1^2*g3^15*t^8.64)/g2^3 - t^8.65/(g1^2*g2^23*g3^7) + (g1*g3^18*t^8.65)/g2^12 + 2*g1^3*g2^12*g3^6*t^8.74 + 3*g1^2*g2^3*g3^9*t^8.74 + (2*g1*g3^12*t^8.75)/g2^6 + (g3^15*t^8.75)/g2^15 + (g3^18*t^8.76)/(g1*g2^24) + 2*g1^3*g2^18*t^8.84 + 4*g1^2*g2^9*g3^3*t^8.84 - 2*g1*g3^6*t^8.85 + (4*g3^9*t^8.85)/g2^9 + (2*g3^12*t^8.86)/(g1*g2^18) + (g3^15*t^8.86)/(g1^2*g2^27) + (g3^18*t^8.87)/(g1^3*g2^36) + (g1^2*g2^15*t^8.94)/g3^3 - 8*g1*g2^6*t^8.95 - (g3^3*t^8.95)/g2^3 - (5*g3^6*t^8.96)/(g1*g2^12) + (g3^9*t^8.96)/(g1^2*g2^21) - (g2*t^4.02)/(g3*y) - (g2^2*t^5.03)/(g3^2*y) - (g1*g2*g3^5*t^6.86)/y - (2*g1*g2^7*t^6.96)/(g3*y) - (g3^2*t^6.97)/(g2^2*y) - (g3^5*t^6.97)/(g1*g2^11*y) - (g1*g2^2*g3^4*t^7.88)/y - (2*g1*g2^8*t^7.98)/(g3^2*y) - (g3*t^7.98)/(g2*y) - (g3^4*t^7.99)/(g1*g2^10*y) + (2*g1^2*g2^6*g3^6*t^8.79)/y + (g1*g3^9*t^8.8)/(g2^3*y) + (g3^12*t^8.8)/(g2^12*y) + (g1^2*g2^12*t^8.89)/y + (g1*g2^3*g3^3*t^8.9)/y + (2*g3^6*t^8.9)/(g2^6*y) + (g3^9*t^8.91)/(g1*g2^15*y) - (g1*g2^9*t^8.99)/(g3^3*y) - (g2*t^4.02*y)/g3 - (g2^2*t^5.03*y)/g3^2 - g1*g2*g3^5*t^6.86*y - (2*g1*g2^7*t^6.96*y)/g3 - (g3^2*t^6.97*y)/g2^2 - (g3^5*t^6.97*y)/(g1*g2^11) - g1*g2^2*g3^4*t^7.88*y - (2*g1*g2^8*t^7.98*y)/g3^2 - (g3*t^7.98*y)/g2 - (g3^4*t^7.99*y)/(g1*g2^10) + 2*g1^2*g2^6*g3^6*t^8.79*y + (g1*g3^9*t^8.8*y)/g2^3 + (g3^12*t^8.8*y)/g2^12 + g1^2*g2^12*t^8.89*y + g1*g2^3*g3^3*t^8.9*y + (2*g3^6*t^8.9*y)/g2^6 + (g3^9*t^8.91*y)/(g1*g2^15) - (g1*g2^9*t^8.99*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57364 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ 1.4543 1.647 0.883 [M:[0.9835, 1.3223], q:[0.4916, 0.4916], qb:[0.5084, 0.4753], phi:[0.3388]] 2*t^2.901 + t^2.95 + 2*t^3. + 2*t^3.917 + t^3.967 + 2*t^4.017 + 2*t^4.934 + 2*t^5.033 + t^5.394 + 2*t^5.441 + t^5.493 + 3*t^5.802 + 2*t^5.851 + 4*t^5.901 + 2*t^5.95 - 3*t^6. - t^4.017/y - t^5.033/y - t^4.017*y - t^5.033*y detail