Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57352 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4105 1.6616 0.8489 [M:[0.7823, 1.2], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] [M:[[1, 0, 1], [0, 0, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$ 5 2*t^2.347 + 2*t^2.4 + t^2.453 + t^3.547 + 4*t^3.6 + 3*t^4.694 + 5*t^4.747 + 2*t^4.773 + 7*t^4.8 + 2*t^4.827 + 3*t^4.853 + t^4.906 + 2*t^5.894 + 8*t^5.947 + 2*t^5.973 + 5*t^6. + 2*t^6.027 + 2*t^6.053 + 4*t^7.041 + 9*t^7.094 + 6*t^7.12 + 16*t^7.147 + 8*t^7.173 + 19*t^7.2 + 6*t^7.227 + 6*t^7.253 + 4*t^7.28 + 3*t^7.306 + t^7.359 + 3*t^8.241 + 13*t^8.294 + 4*t^8.32 + 12*t^8.347 + 8*t^8.373 + 12*t^8.4 + 4*t^8.427 + 2*t^8.453 + 2*t^8.506 - t^4.2/y - t^5.4/y - (2*t^6.547)/y - (2*t^6.6)/y - t^6.653/y + t^7.694/y + (2*t^7.747)/y + (2*t^7.853)/y - t^8.894/y + (5*t^8.947)/y - t^4.2*y - t^5.4*y - 2*t^6.547*y - 2*t^6.6*y - t^6.653*y + t^7.694*y + 2*t^7.747*y + 2*t^7.853*y - t^8.894*y + 5*t^8.947*y 2*g1*g3*t^2.347 + t^2.4/(g1*g2) + g1*g2*t^2.4 + t^2.453/(g1*g3) + g1*g3*t^3.547 + 2*t^3.6 + t^3.6/(g1*g2) + g1*g2*t^3.6 + 3*g1^2*g3^2*t^4.694 + g1*g3*t^4.747 + (2*g3*t^4.747)/g2 + 2*g1^2*g2*g3*t^4.747 + (g1*t^4.773)/(g2*g3) + g2*g3^2*t^4.773 + 3*t^4.8 + t^4.8/(g1^2*g2^2) + t^4.8/(g1*g2) + g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + t^4.827/(g1*g2^2*g3^2) + g2^2*g3*t^4.827 + t^4.853/(g1*g3) + t^4.853/(g1^2*g2*g3) + (g2*t^4.853)/g3 + t^4.906/(g1^2*g3^2) + 2*g1^2*g3^2*t^5.894 + 4*g1*g3*t^5.947 + (2*g3*t^5.947)/g2 + 2*g1^2*g2*g3*t^5.947 + (g1*t^5.973)/(g2*g3) + g2*g3^2*t^5.973 - t^6. + t^6./(g1^2*g2^2) + (2*t^6.)/(g1*g2) + 2*g1*g2*t^6. + g1^2*g2^2*t^6. + t^6.027/(g1*g2^2*g3^2) + g2^2*g3*t^6.027 + (2*t^6.053)/(g1*g3) + 4*g1^3*g3^3*t^7.041 + 3*g1^2*g3^2*t^7.094 + (3*g1*g3^2*t^7.094)/g2 + 3*g1^3*g2*g3^2*t^7.094 + g1^3*t^7.12 + (2*g1^2*t^7.12)/g2 + g3^3*t^7.12 + 2*g1*g2*g3^3*t^7.12 + 6*g1*g3*t^7.147 + (2*g3*t^7.147)/(g1*g2^2) + (3*g3*t^7.147)/g2 + 3*g1^2*g2*g3*t^7.147 + 2*g1^3*g2^2*g3*t^7.147 + (g1^2*t^7.173)/g3 + (2*t^7.173)/(g2^2*g3) + (g1*t^7.173)/(g2*g3) + (g3^2*t^7.173)/g1 + g2*g3^2*t^7.173 + 2*g1*g2^2*g3^2*t^7.173 + 5*t^7.2 + t^7.2/(g1^3*g2^3) + (2*t^7.2)/(g1^2*g2^2) + (4*t^7.2)/(g1*g2) + 4*g1*g2*t^7.2 + 2*g1^2*g2^2*t^7.2 + g1^3*g2^3*t^7.2 + t^7.227/(g1^2*g2^3*g3^2) + t^7.227/(g1*g2^2*g3^2) + t^7.227/(g2*g3^2) + (g2*g3*t^7.227)/g1 + g2^2*g3*t^7.227 + g1*g2^3*g3*t^7.227 + (2*t^7.253)/(g1*g3) + t^7.253/(g1^3*g2^2*g3) + t^7.253/(g1^2*g2*g3) + (g2*t^7.253)/g3 + (g1*g2^2*t^7.253)/g3 + (g2^2*t^7.28)/g1 + g2^3*t^7.28 + t^7.28/(g1^3*g2^3*g3^3) + t^7.28/(g1^2*g2^2*g3^3) + t^7.306/(g1^2*g3^2) + t^7.306/(g1^3*g2*g3^2) + (g2*t^7.306)/(g1*g3^2) + t^7.359/(g1^3*g3^3) + 3*g1^3*g3^3*t^8.241 + 7*g1^2*g3^2*t^8.294 + (3*g1*g3^2*t^8.294)/g2 + 3*g1^3*g2*g3^2*t^8.294 + (2*g1^2*t^8.32)/g2 + 2*g1*g2*g3^3*t^8.32 - 2*g1*g3*t^8.347 + (2*g3*t^8.347)/(g1*g2^2) + (5*g3*t^8.347)/g2 + 5*g1^2*g2*g3*t^8.347 + 2*g1^3*g2^2*g3*t^8.347 + (g1^2*t^8.373)/g3 + (2*t^8.373)/(g2^2*g3) + (g1*t^8.373)/(g2*g3) + (g3^2*t^8.373)/g1 + g2*g3^2*t^8.373 + 2*g1*g2^2*g3^2*t^8.373 + 6*t^8.4 + t^8.4/(g1^3*g2^3) + (3*t^8.4)/(g1^2*g2^2) - t^8.4/(g1*g2) - g1*g2*t^8.4 + 3*g1^2*g2^2*t^8.4 + g1^3*g2^3*t^8.4 + t^8.427/(g1^2*g2^3*g3^2) + t^8.427/(g1*g2^2*g3^2) + g2^2*g3*t^8.427 + g1*g2^3*g3*t^8.427 - (2*t^8.453)/(g1*g3) + (2*t^8.453)/(g1^2*g2*g3) + (2*g2*t^8.453)/g3 + (2*t^8.506)/(g1^2*g3^2) - t^4.2/y - t^5.4/y - (2*g1*g3*t^6.547)/y - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y - t^6.653/(g1*g3*y) + (g1^2*g3^2*t^7.694)/y - (2*g1*g3*t^7.747)/y + (2*g3*t^7.747)/(g2*y) + (2*g1^2*g2*g3*t^7.747)/y + (2*t^7.8)/y - t^7.8/(g1*g2*y) - (g1*g2*t^7.8)/y + t^7.853/(g1^2*g2*g3*y) + (g2*t^7.853)/(g3*y) - (g1^2*g3^2*t^8.894)/y + (3*g1*g3*t^8.947)/y + (g3*t^8.947)/(g2*y) + (g1^2*g2*g3*t^8.947)/y - t^4.2*y - t^5.4*y - 2*g1*g3*t^6.547*y - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y - (t^6.653*y)/(g1*g3) + g1^2*g3^2*t^7.694*y - 2*g1*g3*t^7.747*y + (2*g3*t^7.747*y)/g2 + 2*g1^2*g2*g3*t^7.747*y + 2*t^7.8*y - (t^7.8*y)/(g1*g2) - g1*g2*t^7.8*y + (t^7.853*y)/(g1^2*g2*g3) + (g2*t^7.853*y)/g3 - g1^2*g3^2*t^8.894*y + 3*g1*g3*t^8.947*y + (g3*t^8.947*y)/g2 + g1^2*g2*g3*t^8.947*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58343 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4276 1.6923 0.8436 [X:[], M:[0.7823, 1.2, 0.7823], q:[0.3999, 0.3999], qb:[0.4178, 0.3824], phi:[0.4]] 4*t^2.35 + 2*t^2.45 + 2*t^3.55 + 2*t^3.6 + 10*t^4.69 + 3*t^4.75 + 10*t^4.8 + 3*t^4.85 + 3*t^4.91 + 7*t^5.89 + 9*t^5.95 - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58341 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 1.3958 1.6382 0.8521 [X:[], M:[0.7613, 1.2, 1.1613], q:[0.4193, 0.3807], qb:[0.4193, 0.3807], phi:[0.4]] 2*t^2.28 + 2*t^2.4 + 2*t^3.48 + 4*t^3.6 + 3*t^4.57 + 5*t^4.68 + 2*t^4.74 + 5*t^4.8 + 2*t^4.86 + t^4.92 + 4*t^5.77 + 10*t^5.88 + 2*t^5.94 + 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58340 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.3947 1.6347 0.8532 [X:[], M:[0.7823, 1.2, 1.1779], q:[0.4201, 0.3803], qb:[0.3977, 0.402], phi:[0.4]] t^2.33 + 2*t^2.35 + t^2.45 + 2*t^3.53 + t^3.55 + 2*t^3.6 + t^3.67 + t^4.67 + 2*t^4.68 + 3*t^4.69 + t^4.73 + t^4.74 + t^4.75 + 2*t^4.79 + 2*t^4.8 + t^4.81 + t^4.85 + t^4.86 + t^4.87 + t^4.91 + 2*t^5.87 + 4*t^5.88 + 2*t^5.89 + 2*t^5.93 + t^5.94 + 4*t^5.95 + 2*t^5.99 - 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47890 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.427 1.6906 0.8441 [M:[0.7823], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] 2*t^2.347 + 3*t^2.4 + t^2.453 + t^3.547 + 3*t^3.6 + 3*t^4.694 + 7*t^4.747 + 2*t^4.773 + 10*t^4.8 + 2*t^4.827 + 4*t^4.853 + t^4.906 + 2*t^5.894 + 7*t^5.947 + 2*t^5.973 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail