Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47890 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.427 1.6906 0.8441 [M:[0.7823], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] [M:[[1, 0, 1]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$ 6 2*t^2.347 + 3*t^2.4 + t^2.453 + t^3.547 + 3*t^3.6 + 3*t^4.694 + 7*t^4.747 + 2*t^4.773 + 10*t^4.8 + 2*t^4.827 + 4*t^4.853 + t^4.906 + 2*t^5.894 + 7*t^5.947 + 2*t^5.973 + 6*t^6. + 2*t^6.027 + t^6.053 + 4*t^7.041 + 12*t^7.094 + 6*t^7.12 + 22*t^7.147 + 10*t^7.173 + 25*t^7.2 + 8*t^7.227 + 10*t^7.253 + 4*t^7.28 + 4*t^7.306 + t^7.359 + 3*t^8.241 + 12*t^8.294 + 4*t^8.32 + 14*t^8.347 + 8*t^8.373 + 11*t^8.4 + 4*t^8.427 + t^8.506 - t^4.2/y - t^5.4/y - (2*t^6.547)/y - (3*t^6.6)/y - t^6.653/y + t^7.694/y + (4*t^7.747)/y + (2*t^7.8)/y + (3*t^7.853)/y - t^8.894/y + (2*t^8.947)/y - t^4.2*y - t^5.4*y - 2*t^6.547*y - 3*t^6.6*y - t^6.653*y + t^7.694*y + 4*t^7.747*y + 2*t^7.8*y + 3*t^7.853*y - t^8.894*y + 2*t^8.947*y 2*g1*g3*t^2.347 + t^2.4 + t^2.4/(g1*g2) + g1*g2*t^2.4 + t^2.453/(g1*g3) + g1*g3*t^3.547 + t^3.6 + t^3.6/(g1*g2) + g1*g2*t^3.6 + 3*g1^2*g3^2*t^4.694 + 3*g1*g3*t^4.747 + (2*g3*t^4.747)/g2 + 2*g1^2*g2*g3*t^4.747 + (g1*t^4.773)/(g2*g3) + g2*g3^2*t^4.773 + 4*t^4.8 + t^4.8/(g1^2*g2^2) + (2*t^4.8)/(g1*g2) + 2*g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + t^4.827/(g1*g2^2*g3^2) + g2^2*g3*t^4.827 + (2*t^4.853)/(g1*g3) + t^4.853/(g1^2*g2*g3) + (g2*t^4.853)/g3 + t^4.906/(g1^2*g3^2) + 2*g1^2*g3^2*t^5.894 + 3*g1*g3*t^5.947 + (2*g3*t^5.947)/g2 + 2*g1^2*g2*g3*t^5.947 + (g1*t^5.973)/(g2*g3) + g2*g3^2*t^5.973 + t^6./(g1^2*g2^2) + (2*t^6.)/(g1*g2) + 2*g1*g2*t^6. + g1^2*g2^2*t^6. + t^6.027/(g1*g2^2*g3^2) + g2^2*g3*t^6.027 + t^6.053/(g1*g3) + 4*g1^3*g3^3*t^7.041 + 6*g1^2*g3^2*t^7.094 + (3*g1*g3^2*t^7.094)/g2 + 3*g1^3*g2*g3^2*t^7.094 + g1^3*t^7.12 + (2*g1^2*t^7.12)/g2 + g3^3*t^7.12 + 2*g1*g2*g3^3*t^7.12 + 8*g1*g3*t^7.147 + (2*g3*t^7.147)/(g1*g2^2) + (5*g3*t^7.147)/g2 + 5*g1^2*g2*g3*t^7.147 + 2*g1^3*g2^2*g3*t^7.147 + (g1^2*t^7.173)/g3 + (2*t^7.173)/(g2^2*g3) + (2*g1*t^7.173)/(g2*g3) + (g3^2*t^7.173)/g1 + 2*g2*g3^2*t^7.173 + 2*g1*g2^2*g3^2*t^7.173 + 7*t^7.2 + t^7.2/(g1^3*g2^3) + (3*t^7.2)/(g1^2*g2^2) + (5*t^7.2)/(g1*g2) + 5*g1*g2*t^7.2 + 3*g1^2*g2^2*t^7.2 + g1^3*g2^3*t^7.2 + t^7.227/(g1^2*g2^3*g3^2) + (2*t^7.227)/(g1*g2^2*g3^2) + t^7.227/(g2*g3^2) + (g2*g3*t^7.227)/g1 + 2*g2^2*g3*t^7.227 + g1*g2^3*g3*t^7.227 + (4*t^7.253)/(g1*g3) + t^7.253/(g1^3*g2^2*g3) + (2*t^7.253)/(g1^2*g2*g3) + (2*g2*t^7.253)/g3 + (g1*g2^2*t^7.253)/g3 + (g2^2*t^7.28)/g1 + g2^3*t^7.28 + t^7.28/(g1^3*g2^3*g3^3) + t^7.28/(g1^2*g2^2*g3^3) + (2*t^7.306)/(g1^2*g3^2) + t^7.306/(g1^3*g2*g3^2) + (g2*t^7.306)/(g1*g3^2) + t^7.359/(g1^3*g3^3) + 3*g1^3*g3^3*t^8.241 + 6*g1^2*g3^2*t^8.294 + (3*g1*g3^2*t^8.294)/g2 + 3*g1^3*g2*g3^2*t^8.294 + (2*g1^2*t^8.32)/g2 + 2*g1*g2*g3^3*t^8.32 + (2*g3*t^8.347)/(g1*g2^2) + (5*g3*t^8.347)/g2 + 5*g1^2*g2*g3*t^8.347 + 2*g1^3*g2^2*g3*t^8.347 + (g1^2*t^8.373)/g3 + (2*t^8.373)/(g2^2*g3) + (g1*t^8.373)/(g2*g3) + (g3^2*t^8.373)/g1 + g2*g3^2*t^8.373 + 2*g1*g2^2*g3^2*t^8.373 + 3*t^8.4 + t^8.4/(g1^3*g2^3) + (3*t^8.4)/(g1^2*g2^2) + 3*g1^2*g2^2*t^8.4 + g1^3*g2^3*t^8.4 + t^8.427/(g1^2*g2^3*g3^2) + t^8.427/(g1*g2^2*g3^2) + g2^2*g3*t^8.427 + g1*g2^3*g3*t^8.427 - (2*t^8.453)/(g1*g3) + t^8.453/(g1^2*g2*g3) + (g2*t^8.453)/g3 + t^8.506/(g1^2*g3^2) - t^4.2/y - t^5.4/y - (2*g1*g3*t^6.547)/y - t^6.6/y - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y - t^6.653/(g1*g3*y) + (g1^2*g3^2*t^7.694)/y + (2*g3*t^7.747)/(g2*y) + (2*g1^2*g2*g3*t^7.747)/y + (2*t^7.8)/y + t^7.853/(g1*g3*y) + t^7.853/(g1^2*g2*g3*y) + (g2*t^7.853)/(g3*y) - (g1^2*g3^2*t^8.894)/y + (g3*t^8.947)/(g2*y) + (g1^2*g2*g3*t^8.947)/y - t^4.2*y - t^5.4*y - 2*g1*g3*t^6.547*y - t^6.6*y - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y - (t^6.653*y)/(g1*g3) + g1^2*g3^2*t^7.694*y + (2*g3*t^7.747*y)/g2 + 2*g1^2*g2*g3*t^7.747*y + 2*t^7.8*y + (t^7.853*y)/(g1*g3) + (t^7.853*y)/(g1^2*g2*g3) + (g2*t^7.853*y)/g3 - g1^2*g3^2*t^8.894*y + (g3*t^8.947*y)/g2 + g1^2*g2*g3*t^8.947*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57341 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.155 1.355 0.8524 [X:[1.6], M:[1.2], q:[0.2, 0.6], qb:[0.2, 0.6], phi:[0.4]] 3*t^2.4 + 6*t^3.6 + 2*t^4.2 + 8*t^4.8 + 6*t^5.4 + 12*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 231/200, c: 271/200, X1: 8/5, M1: 6/5, q1: 1/5, q2: 3/5, qb1: 1/5, qb2: 3/5, phi1: 2/5}
57342 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{1}$ + ${ }q_{1}\tilde{q}_{1}X_{2}$ 1.2521 1.4533 0.8616 [X:[1.4191, 1.3809], M:[0.9809], q:[0.4026, 0.3644], qb:[0.2165, 0.6165], phi:[0.4]] t^2.4 + 3*t^2.943 + t^3.057 + t^3.6 + 3*t^4.143 + 3*t^4.257 + t^4.349 + t^4.594 + t^4.709 + 4*t^5.343 + 2*t^5.457 + 3*t^5.549 + t^5.794 + 5*t^5.885 + t^5.909 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57357 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4441 1.7213 0.8389 [M:[0.7823, 0.7823], q:[0.3999, 0.3999], qb:[0.4178, 0.3824], phi:[0.4]] 4*t^2.347 + t^2.4 + 2*t^2.453 + 2*t^3.547 + t^3.6 + 10*t^4.694 + 6*t^4.747 + t^4.748 + 2*t^4.799 + 9*t^4.8 + 4*t^4.853 + t^4.854 + 3*t^4.906 + 7*t^5.894 + 6*t^5.947 + t^5.948 + 2*t^5.999 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57355 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.443 1.718 0.8399 [M:[0.8, 0.8], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 7*t^2.4 + 3*t^3.6 + 36*t^4.8 + 17*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 1443/1000, c: 859/500, M1: 4/5, M2: 4/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}
57352 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4105 1.6616 0.8489 [M:[0.7823, 1.2], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] 2*t^2.347 + 2*t^2.4 + t^2.453 + t^3.547 + 4*t^3.6 + 3*t^4.694 + 5*t^4.747 + 2*t^4.773 + 7*t^4.8 + 2*t^4.827 + 3*t^4.853 + t^4.906 + 2*t^5.894 + 8*t^5.947 + 2*t^5.973 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57356 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4435 1.7196 0.8394 [M:[0.7823, 0.8], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] 2*t^2.347 + 4*t^2.4 + t^2.453 + t^3.547 + 2*t^3.6 + 3*t^4.694 + 9*t^4.747 + 2*t^4.773 + 14*t^4.8 + 2*t^4.827 + 5*t^4.853 + t^4.906 + 2*t^5.894 + 6*t^5.947 + 2*t^5.973 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57354 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4123 1.6672 0.8471 [M:[0.7613, 1.1613], q:[0.4193, 0.3807], qb:[0.4193, 0.3807], phi:[0.4]] 2*t^2.284 + 3*t^2.4 + 2*t^3.484 + 3*t^3.6 + 3*t^4.568 + 7*t^4.684 + 2*t^4.742 + 8*t^4.8 + 2*t^4.858 + t^4.916 + 4*t^5.768 + 10*t^5.884 + 2*t^5.942 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57353 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4112 1.6637 0.8482 [M:[0.7823, 1.1779], q:[0.3977, 0.402], qb:[0.4201, 0.3803], phi:[0.4]] t^2.334 + 2*t^2.347 + t^2.4 + t^2.453 + 2*t^3.534 + t^3.547 + t^3.6 + t^3.666 + t^4.668 + 2*t^4.681 + 3*t^4.694 + 2*t^4.734 + t^4.742 + 3*t^4.747 + t^4.787 + t^4.792 + 3*t^4.8 + t^4.805 + 2*t^4.853 + t^4.861 + t^4.866 + t^4.906 + 2*t^5.868 + 4*t^5.881 + 2*t^5.894 + 3*t^5.934 + t^5.942 + 3*t^5.947 + t^5.987 + t^5.992 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57350 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.4268 1.6899 0.8443 [M:[0.7907], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] 3*t^2.372 + t^2.4 + 2*t^2.428 + 2*t^3.572 + t^3.6 + t^3.628 + 6*t^4.744 + 6*t^4.772 + 9*t^4.8 + 5*t^4.828 + 3*t^4.856 + 5*t^5.944 + 6*t^5.972 + 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57344 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3363 1.595 0.8378 [M:[0.8611], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] t^2.152 + t^2.217 + t^2.4 + 2*t^2.583 + t^2.648 + t^3.352 + t^3.6 + 2*t^3.783 + 2*t^3.848 + t^4.304 + t^4.369 + t^4.434 + 2*t^4.552 + 2*t^4.617 + 2*t^4.735 + 4*t^4.8 + t^4.865 + 4*t^4.983 + 3*t^5.048 + 3*t^5.166 + 2*t^5.231 + t^5.296 + t^5.504 + t^5.569 + 2*t^5.752 + t^5.817 + 3*t^5.935 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57347 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3452 1.6133 0.8338 [M:[0.7103], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] 2*t^2.131 + t^2.15 + t^2.4 + t^2.65 + t^2.669 + t^3.331 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.869 + 3*t^4.262 + 2*t^4.281 + t^4.301 + 3*t^4.531 + 2*t^4.55 + 2*t^4.781 + 4*t^4.8 + t^4.819 + 3*t^5.05 + 3*t^5.069 + t^5.299 + t^5.319 + t^5.338 + 2*t^5.462 + 3*t^5.481 + t^5.501 + 3*t^5.731 + 2*t^5.75 + 4*t^5.981 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57351 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ 1.427 1.6905 0.8441 [M:[0.7838], q:[0.4098, 0.3951], qb:[0.4065, 0.3887], phi:[0.4]] 2*t^2.351 + t^2.395 + t^2.4 + t^2.405 + t^2.449 + t^3.551 + t^3.595 + t^3.6 + t^3.605 + 3*t^4.703 + 2*t^4.747 + 4*t^4.751 + 2*t^4.756 + t^4.791 + 2*t^4.795 + 5*t^4.8 + 3*t^4.805 + t^4.809 + 2*t^4.844 + 2*t^4.849 + t^4.853 + t^4.897 + 2*t^5.903 + 2*t^5.947 + 4*t^5.951 + 2*t^5.956 + t^5.991 + 2*t^5.995 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57345 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1886 1.4148 0.8401 [X:[1.6], M:[0.7804], q:[0.2065, 0.5869], qb:[0.6131, 0.1935], phi:[0.4]] 2*t^2.341 + 2*t^2.4 + t^2.459 + t^3.541 + 3*t^3.6 + 2*t^4.2 + 3*t^4.682 + 4*t^4.741 + 7*t^4.8 + 2*t^4.859 + t^4.918 + 2*t^5.341 + 2*t^5.4 + 2*t^5.459 + 2*t^5.882 + 7*t^5.941 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
57346 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.3468 1.5854 0.8495 [X:[1.4], M:[0.7819], q:[0.3076, 0.4894], qb:[0.5106, 0.2924], phi:[0.4]] 2*t^2.346 + t^2.4 + t^2.454 + 2*t^3. + t^3.546 + t^3.6 + 3*t^4.2 + t^4.486 + t^4.514 + 3*t^4.691 + 3*t^4.746 + 3*t^4.8 + 2*t^4.854 + t^4.909 + t^5.059 + t^5.141 + 3*t^5.346 + 3*t^5.4 + t^5.454 + t^5.686 + t^5.714 + 2*t^5.891 + 3*t^5.946 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47871 SU3adj1nf2 ${}\phi_{1}^{5}$ 1.41 1.66 0.8494 [q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 5*t^2.4 + 5*t^3.6 + 23*t^4.8 + 21*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 141/100, c: 83/50, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}