Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58340 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.3947 1.6347 0.8532 [X:[], M:[0.7823, 1.2, 1.1779], q:[0.4201, 0.3803], qb:[0.3977, 0.402], phi:[0.4]] [X:[], M:[[1, 0, 1], [0, 0, 0], [1, 1, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ -2 t^2.33 + 2*t^2.35 + t^2.45 + 2*t^3.53 + t^3.55 + 2*t^3.6 + t^3.67 + t^4.67 + 2*t^4.68 + 3*t^4.69 + t^4.73 + t^4.74 + t^4.75 + 2*t^4.79 + 2*t^4.8 + t^4.81 + t^4.85 + t^4.86 + t^4.87 + t^4.91 + 2*t^5.87 + 4*t^5.88 + 2*t^5.89 + 2*t^5.93 + t^5.94 + 4*t^5.95 + 2*t^5.99 - 2*t^6. + 2*t^6.01 + 2*t^6.05 + t^6.06 + t^7. + 2*t^7.01 + t^7.02 + 3*t^7.03 + 4*t^7.04 + 4*t^7.07 + 5*t^7.08 + 5*t^7.09 + t^7.12 + 6*t^7.13 + 3*t^7.14 + 6*t^7.15 + t^7.18 + 3*t^7.19 + 5*t^7.2 + 4*t^7.21 + t^7.22 + t^7.24 + 2*t^7.25 + t^7.26 + t^7.27 + 2*t^7.31 + t^7.33 + t^7.36 + t^7.38 + 2*t^8.2 + 4*t^8.21 + 6*t^8.23 + 3*t^8.24 + 4*t^8.27 + 8*t^8.28 + 9*t^8.29 + t^8.32 + 2*t^8.33 + 4*t^8.34 - 2*t^8.35 + t^8.36 + 5*t^8.39 + 5*t^8.4 + 3*t^8.41 + t^8.44 - 2*t^8.45 + 2*t^8.51 + t^8.53 - t^4.2/y - t^5.4/y - t^6.53/y - (2*t^6.55)/y - t^6.65/y + (2*t^7.68)/y + t^7.69/y - (2*t^7.73)/y - (2*t^7.75)/y + t^7.79/y + t^7.8/y + t^8.87/y + (3*t^8.88)/y - t^8.89/y + (3*t^8.95)/y + t^8.99/y - t^4.2*y - t^5.4*y - t^6.53*y - 2*t^6.55*y - t^6.65*y + 2*t^7.68*y + t^7.69*y - 2*t^7.73*y - 2*t^7.75*y + t^7.79*y + t^7.8*y + t^8.87*y + 3*t^8.88*y - t^8.89*y + 3*t^8.95*y + t^8.99*y g1*g2*t^2.33 + 2*g1*g3*t^2.35 + t^2.45/(g1*g3) + 2*g1*g2*t^3.53 + g1*g3*t^3.55 + 2*t^3.6 + t^3.67/(g1*g2) + g1^2*g2^2*t^4.67 + 2*g1^2*g2*g3*t^4.68 + 3*g1^2*g3^2*t^4.69 + g1*g2*t^4.73 + (g1*t^4.74)/(g2*g3) + g1*g3*t^4.75 + (g2*t^4.79)/g3 + g2^2*g3*t^4.79 + 2*t^4.8 + g2*g3^2*t^4.81 + t^4.85/(g1*g3) + t^4.86/(g1*g2^2*g3^2) + t^4.87/(g1*g2) + t^4.91/(g1^2*g3^2) + 2*g1^2*g2^2*t^5.87 + 4*g1^2*g2*g3*t^5.88 + 2*g1^2*g3^2*t^5.89 + 2*g1*g2*t^5.93 + (g1*t^5.94)/(g2*g3) + 4*g1*g3*t^5.95 + (g2*t^5.99)/g3 + g2^2*g3*t^5.99 - 2*t^6. + (g3*t^6.01)/g2 + g2*g3^2*t^6.01 + (2*t^6.05)/(g1*g3) + t^6.06/(g1*g2^2*g3^2) + g1^3*g2^3*t^7. + 2*g1^3*g2^2*g3*t^7.01 + g1^3*t^7.02 + 3*g1^3*g2*g3^2*t^7.03 + 4*g1^3*g3^3*t^7.04 + 4*g1^2*g2^2*t^7.07 + (g1^2*t^7.08)/g3 + 4*g1^2*g2*g3*t^7.08 + (2*g1^2*t^7.09)/g2 + 3*g1^2*g3^2*t^7.09 + (g1*g2^2*t^7.12)/g3 + 5*g1*g2*t^7.13 + g1*g2^3*g3*t^7.13 + (g1*t^7.14)/(g2*g3) + 2*g1*g2^2*g3^2*t^7.14 + 4*g1*g3*t^7.15 + 2*g1*g2*g3^3*t^7.15 + g2^3*t^7.18 + t^7.19/(g2*g3^2) + (g2*t^7.19)/g3 + g2^2*g3*t^7.19 + 5*t^7.2 + t^7.21/(g2^2*g3) + (2*g3*t^7.21)/g2 + g2*g3^2*t^7.21 + g3^3*t^7.22 + (g2*t^7.24)/(g1*g3^2) + (g2^2*t^7.25)/g1 + t^7.25/(g1*g3) + t^7.26/(g1*g2^2*g3^2) + t^7.27/(g1*g2) + t^7.31/(g1^2*g2^2*g3^3) + t^7.31/(g1^2*g3^2) + t^7.33/(g1^2*g2^2) + t^7.36/(g1^3*g3^3) + t^7.38/(g1^3*g2^3*g3^3) + 2*g1^3*g2^3*t^8.2 + 4*g1^3*g2^2*g3*t^8.21 + 6*g1^3*g2*g3^2*t^8.23 + 3*g1^3*g3^3*t^8.24 + 4*g1^2*g2^2*t^8.27 + (2*g1^2*t^8.28)/g3 + 6*g1^2*g2*g3*t^8.28 + (2*g1^2*t^8.29)/g2 + 7*g1^2*g3^2*t^8.29 + (g1*g2^2*t^8.32)/g3 + 2*g1*g2^3*g3*t^8.33 + (g1*t^8.34)/(g2*g3) + 3*g1*g2^2*g3^2*t^8.34 - 4*g1*g3*t^8.35 + 2*g1*g2*g3^3*t^8.35 + (g1*g3^2*t^8.36)/g2 + t^8.39/(g2*g3^2) + (3*g2*t^8.39)/g3 + g2^2*g3*t^8.39 + 5*t^8.4 + t^8.41/(g2^2*g3) + (g3*t^8.41)/g2 + g2*g3^2*t^8.41 + (g2*t^8.44)/(g1*g3^2) - (2*t^8.45)/(g1*g3) + t^8.46/(g1*g2^2*g3^2) - (g2*g3*t^8.46)/g1 + (2*t^8.51)/(g1^2*g3^2) + t^8.53/(g1^2*g2^2) - t^4.2/y - t^5.4/y - (g1*g2*t^6.53)/y - (2*g1*g3*t^6.55)/y - t^6.65/(g1*g3*y) + (2*g1^2*g2*g3*t^7.68)/y + (g1^2*g3^2*t^7.69)/y - (2*g1*g2*t^7.73)/y - (2*g1*g3*t^7.75)/y + (g2*t^7.79)/(g3*y) + t^7.8/y + (g1^2*g2^2*t^8.87)/y + (3*g1^2*g2*g3*t^8.88)/y - (g1^2*g3^2*t^8.89)/y + (3*g1*g3*t^8.95)/y + (g2*t^8.99)/(g3*y) - t^4.2*y - t^5.4*y - g1*g2*t^6.53*y - 2*g1*g3*t^6.55*y - (t^6.65*y)/(g1*g3) + 2*g1^2*g2*g3*t^7.68*y + g1^2*g3^2*t^7.69*y - 2*g1*g2*t^7.73*y - 2*g1*g3*t^7.75*y + (g2*t^7.79*y)/g3 + t^7.8*y + g1^2*g2^2*t^8.87*y + 3*g1^2*g2*g3*t^8.88*y - g1^2*g3^2*t^8.89*y + 3*g1*g3*t^8.95*y + (g2*t^8.99*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57352 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4105 1.6616 0.8489 [M:[0.7823, 1.2], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] 2*t^2.347 + 2*t^2.4 + t^2.453 + t^3.547 + 4*t^3.6 + 3*t^4.694 + 5*t^4.747 + 2*t^4.773 + 7*t^4.8 + 2*t^4.827 + 3*t^4.853 + t^4.906 + 2*t^5.894 + 8*t^5.947 + 2*t^5.973 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail