Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57344 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3363 1.595 0.8378 [M:[0.8611], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] [M:[[1, 2]], q:[[-2, -2], [1, 1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 2 t^2.152 + t^2.217 + t^2.4 + 2*t^2.583 + t^2.648 + t^3.352 + t^3.6 + 2*t^3.783 + 2*t^3.848 + t^4.304 + t^4.369 + t^4.434 + 2*t^4.552 + 2*t^4.617 + 2*t^4.735 + 4*t^4.8 + t^4.865 + 4*t^4.983 + 3*t^5.048 + 3*t^5.166 + 2*t^5.231 + t^5.296 + t^5.504 + t^5.569 + 2*t^5.752 + t^5.817 + 3*t^5.935 + 2*t^6. + t^6.065 + t^6.119 + 5*t^6.183 + 4*t^6.248 + t^6.313 + 4*t^6.366 + 4*t^6.431 + t^6.456 + 2*t^6.496 + t^6.521 + t^6.586 + t^6.65 + 3*t^6.704 + 3*t^6.769 + 2*t^6.834 + 2*t^6.887 + 5*t^6.952 + 4*t^7.017 + t^7.081 + 6*t^7.135 + 8*t^7.2 + 2*t^7.265 + 3*t^7.319 + 9*t^7.383 + 6*t^7.448 + t^7.513 + t^7.538 + 9*t^7.566 + 8*t^7.631 + t^7.656 + 5*t^7.696 + t^7.721 + 4*t^7.75 + t^7.786 + 3*t^7.814 + 2*t^7.879 + 3*t^7.904 + t^7.944 + 3*t^7.969 + t^8.034 + 3*t^8.087 + 3*t^8.152 + t^8.271 + t^8.281 + 8*t^8.335 + 7*t^8.4 + 3*t^8.465 + 5*t^8.519 + t^8.529 + 5*t^8.583 + t^8.608 + 4*t^8.648 + t^8.673 + 2*t^8.702 + t^8.713 + t^8.738 + 12*t^8.766 + t^8.802 + 13*t^8.831 + 3*t^8.856 + t^8.867 + 8*t^8.896 + 3*t^8.921 + 6*t^8.95 + t^8.961 + 2*t^8.986 - t^4.2/y - t^5.4/y - t^6.352/y - t^6.417/y - t^6.6/y - (2*t^6.783)/y - t^6.848/y + t^7.369/y + t^7.617/y + (2*t^7.735)/y + (2*t^7.8)/y + t^7.865/y + t^8.166/y + (2*t^8.231)/y - t^8.634/y + (2*t^8.935)/y - t^4.2*y - t^5.4*y - t^6.352*y - t^6.417*y - t^6.6*y - 2*t^6.783*y - t^6.848*y + t^7.369*y + t^7.617*y + 2*t^7.735*y + 2*t^7.8*y + t^7.865*y + t^8.166*y + 2*t^8.231*y - t^8.634*y + 2*t^8.935*y t^2.152/(g1^2*g2) + t^2.217/(g1*g2^2) + t^2.4 + 2*g1*g2^2*t^2.583 + g1^2*g2*t^2.648 + t^3.352/(g1^2*g2) + t^3.6 + 2*g1*g2^2*t^3.783 + 2*g1^2*g2*t^3.848 + t^4.304/(g1^4*g2^2) + t^4.369/(g1^3*g2^3) + t^4.434/(g1^2*g2^4) + (2*t^4.552)/(g1^2*g2) + (2*t^4.617)/(g1*g2^2) + (2*g2*t^4.735)/g1 + 4*t^4.8 + (g1*t^4.865)/g2 + 4*g1*g2^2*t^4.983 + 3*g1^2*g2*t^5.048 + 3*g1^2*g2^4*t^5.166 + 2*g1^3*g2^3*t^5.231 + g1^4*g2^2*t^5.296 + t^5.504/(g1^4*g2^2) + t^5.569/(g1^3*g2^3) + (2*t^5.752)/(g1^2*g2) + t^5.817/(g1*g2^2) + (3*g2*t^5.935)/g1 + 2*t^6. + (g1*t^6.065)/g2 + g2^3*t^6.119 + 5*g1*g2^2*t^6.183 + 4*g1^2*g2*t^6.248 + g1^3*t^6.313 + 4*g1^2*g2^4*t^6.366 + 4*g1^3*g2^3*t^6.431 + t^6.456/(g1^6*g2^3) + 2*g1^4*g2^2*t^6.496 + t^6.521/(g1^5*g2^4) + t^6.586/(g1^4*g2^5) + t^6.65/(g1^3*g2^6) + (3*t^6.704)/(g1^4*g2^2) + (3*t^6.769)/(g1^3*g2^3) + (2*t^6.834)/(g1^2*g2^4) + (2*t^6.887)/g1^3 + (5*t^6.952)/(g1^2*g2) + (4*t^7.017)/(g1*g2^2) + t^7.081/g2^3 + (6*g2*t^7.135)/g1 + 8*t^7.2 + (2*g1*t^7.265)/g2 + 3*g2^3*t^7.319 + 9*g1*g2^2*t^7.383 + 6*g1^2*g2*t^7.448 + g1^3*t^7.513 + t^7.538/(g1^6*g2^6) + 9*g1^2*g2^4*t^7.566 + 8*g1^3*g2^3*t^7.631 + t^7.656/(g1^6*g2^3) + 5*g1^4*g2^2*t^7.696 + t^7.721/(g1^5*g2^4) + 4*g1^3*g2^6*t^7.75 + t^7.786/(g1^4*g2^5) + 3*g1^4*g2^5*t^7.814 + 2*g1^5*g2^4*t^7.879 + (3*t^7.904)/(g1^4*g2^2) + g1^6*g2^3*t^7.944 + (3*t^7.969)/(g1^3*g2^3) + t^8.034/(g1^2*g2^4) + (3*t^8.087)/g1^3 + (3*t^8.152)/(g1^2*g2) + (g2^2*t^8.271)/g1^2 + t^8.281/g2^3 + (8*g2*t^8.335)/g1 + 7*t^8.4 + (3*g1*t^8.465)/g2 + 5*g2^3*t^8.519 + (g1^2*t^8.529)/g2^2 + 5*g1*g2^2*t^8.583 + t^8.608/(g1^8*g2^4) + 4*g1^2*g2*t^8.648 + t^8.673/(g1^7*g2^5) + 2*g1*g2^5*t^8.702 + g1^3*t^8.713 + t^8.738/(g1^6*g2^6) + 12*g1^2*g2^4*t^8.766 + t^8.802/(g1^5*g2^7) + 13*g1^3*g2^3*t^8.831 + (3*t^8.856)/(g1^6*g2^3) + t^8.867/(g1^4*g2^8) + 8*g1^4*g2^2*t^8.896 + (3*t^8.921)/(g1^5*g2^4) + 6*g1^3*g2^6*t^8.95 + g1^5*g2*t^8.961 + (2*t^8.986)/(g1^4*g2^5) - t^4.2/y - t^5.4/y - t^6.352/(g1^2*g2*y) - t^6.417/(g1*g2^2*y) - t^6.6/y - (2*g1*g2^2*t^6.783)/y - (g1^2*g2*t^6.848)/y + t^7.369/(g1^3*g2^3*y) + t^7.617/(g1*g2^2*y) + (2*g2*t^7.735)/(g1*y) + (2*t^7.8)/y + (g1*t^7.865)/(g2*y) + (g1^2*g2^4*t^8.166)/y + (2*g1^3*g2^3*t^8.231)/y - t^8.634/(g1^2*g2^4*y) + (2*g2*t^8.935)/(g1*y) - t^4.2*y - t^5.4*y - (t^6.352*y)/(g1^2*g2) - (t^6.417*y)/(g1*g2^2) - t^6.6*y - 2*g1*g2^2*t^6.783*y - g1^2*g2*t^6.848*y + (t^7.369*y)/(g1^3*g2^3) + (t^7.617*y)/(g1*g2^2) + (2*g2*t^7.735*y)/g1 + 2*t^7.8*y + (g1*t^7.865*y)/g2 + g1^2*g2^4*t^8.166*y + 2*g1^3*g2^3*t^8.231*y - (t^8.634*y)/(g1^2*g2^4) + (2*g2*t^8.935*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58399 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.1614 1.3743 0.8451 [X:[1.4969], M:[1.0969], q:[0.4041, 0.5979], qb:[0.099, 0.499], phi:[0.4]] t^2.09 + t^2.4 + t^2.71 + 4*t^3.29 + t^3.6 + 2*t^3.91 + t^4.18 + 7*t^4.49 + t^4.8 + 2*t^5.11 + 4*t^5.38 + t^5.42 + 8*t^5.69 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58405 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 1.3198 1.566 0.8428 [X:[], M:[0.8611, 1.2], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] t^2.15 + t^2.22 + 2*t^2.58 + t^2.65 + t^3.35 + 2*t^3.6 + 2*t^3.78 + 2*t^3.85 + t^4.3 + t^4.37 + t^4.43 + t^4.55 + t^4.62 + 2*t^4.74 + 3*t^4.8 + t^4.86 + 2*t^4.98 + 2*t^5.05 + 3*t^5.17 + 2*t^5.23 + t^5.3 + t^5.5 + t^5.57 + 2*t^5.75 + 2*t^5.82 + 3*t^5.94 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58404 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$ 1.3245 1.5834 0.8365 [X:[], M:[0.8573], q:[0.4951, 0.5524], qb:[0.2476, 0.3049], phi:[0.4]] t^2.23 + 3*t^2.4 + 2*t^2.57 + 4*t^3.6 + 2*t^3.77 + t^4.46 + 4*t^4.63 + 11*t^4.8 + 8*t^4.97 + 3*t^5.14 + 4*t^5.83 + 11*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58402 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1661 1.388 0.8401 [X:[1.6], M:[0.8483], q:[0.2345, 0.6828], qb:[0.5172, 0.1655], phi:[0.4]] t^2.26 + 2*t^2.4 + 2*t^2.54 + 3*t^3.6 + 2*t^3.74 + t^4.51 + 3*t^4.66 + 8*t^4.8 + 5*t^4.94 + 4*t^5.09 + t^5.71 + 3*t^5.86 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail
58400 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1912 1.4278 0.8343 [X:[1.5072], M:[0.7072], q:[0.3904, 0.6048], qb:[0.5024, 0.1024], phi:[0.4]] 2*t^2.12 + t^2.4 + 2*t^2.68 + 3*t^3.32 + t^3.6 + t^3.88 + 3*t^4.24 + 8*t^4.52 + 4*t^4.8 + 3*t^5.08 + 3*t^5.36 + 6*t^5.44 + 8*t^5.72 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47890 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.427 1.6906 0.8441 [M:[0.7823], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] 2*t^2.347 + 3*t^2.4 + t^2.453 + t^3.547 + 3*t^3.6 + 3*t^4.694 + 7*t^4.747 + 2*t^4.773 + 10*t^4.8 + 2*t^4.827 + 4*t^4.853 + t^4.906 + 2*t^5.894 + 7*t^5.947 + 2*t^5.973 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail