Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58400 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1912 1.4278 0.8343 [X:[1.5072], M:[0.7072], q:[0.3904, 0.6048], qb:[0.5024, 0.1024], phi:[0.4]] [X:[[3]], M:[[3]], q:[[-4], [2]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 3 2*t^2.12 + t^2.4 + 2*t^2.68 + 3*t^3.32 + t^3.6 + t^3.88 + 3*t^4.24 + 8*t^4.52 + 4*t^4.8 + 3*t^5.08 + 3*t^5.36 + 6*t^5.44 + 8*t^5.72 + 3*t^6. + 2*t^6.28 + 4*t^6.36 + 2*t^6.56 + 18*t^6.64 + 13*t^6.92 + t^7.11 + 12*t^7.2 + 5*t^7.48 + 9*t^7.56 + 6*t^7.76 + 27*t^7.84 + 3*t^8.04 + 9*t^8.12 + 9*t^8.4 + 5*t^8.49 - t^8.68 + 28*t^8.76 + 3*t^8.96 - t^4.2/y - t^5.4/y - (2*t^6.32)/y - t^6.6/y - t^6.88/y + t^7.24/y - t^7.52/y + (3*t^7.8)/y + t^8.08/y + t^8.36/y + (3*t^8.44)/y - t^4.2*y - t^5.4*y - 2*t^6.32*y - t^6.6*y - t^6.88*y + t^7.24*y - t^7.52*y + 3*t^7.8*y + t^8.08*y + t^8.36*y + 3*t^8.44*y 2*g1^3*t^2.12 + t^2.4 + (2*t^2.68)/g1^3 + 3*g1^3*t^3.32 + t^3.6 + t^3.88/g1^3 + 3*g1^6*t^4.24 + 8*g1^3*t^4.52 + 4*t^4.8 + (3*t^5.08)/g1^3 + (3*t^5.36)/g1^6 + 6*g1^6*t^5.44 + 8*g1^3*t^5.72 + 3*t^6. + (2*t^6.28)/g1^3 + 4*g1^9*t^6.36 + (2*t^6.56)/g1^6 + 18*g1^6*t^6.64 + 13*g1^3*t^6.92 + t^7.11/g1^12 + 12*t^7.2 + (5*t^7.48)/g1^3 + 9*g1^9*t^7.56 + (6*t^7.76)/g1^6 + 27*g1^6*t^7.84 + (3*t^8.04)/g1^9 + 9*g1^3*t^8.12 + 9*t^8.4 + 5*g1^12*t^8.49 - t^8.68/g1^3 + 28*g1^9*t^8.76 + (3*t^8.96)/g1^6 - t^4.2/y - t^5.4/y - (2*g1^3*t^6.32)/y - t^6.6/y - t^6.88/(g1^3*y) + (g1^6*t^7.24)/y - (g1^3*t^7.52)/y + (3*t^7.8)/y + t^8.08/(g1^3*y) + t^8.36/(g1^6*y) + (3*g1^6*t^8.44)/y - t^4.2*y - t^5.4*y - 2*g1^3*t^6.32*y - t^6.6*y - (t^6.88*y)/g1^3 + g1^6*t^7.24*y - g1^3*t^7.52*y + 3*t^7.8*y + (t^8.08*y)/g1^3 + (t^8.36*y)/g1^6 + 3*g1^6*t^8.44*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57344 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3363 1.595 0.8378 [M:[0.8611], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] t^2.152 + t^2.217 + t^2.4 + 2*t^2.583 + t^2.648 + t^3.352 + t^3.6 + 2*t^3.783 + 2*t^3.848 + t^4.304 + t^4.369 + t^4.434 + 2*t^4.552 + 2*t^4.617 + 2*t^4.735 + 4*t^4.8 + t^4.865 + 4*t^4.983 + 3*t^5.048 + 3*t^5.166 + 2*t^5.231 + t^5.296 + t^5.504 + t^5.569 + 2*t^5.752 + t^5.817 + 3*t^5.935 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail