Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57278 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4543 1.6397 0.8869 [X:[1.3446], M:[0.9663, 0.9998], q:[0.5085, 0.5081], qb:[0.4917, 0.5255], phi:[0.3277]] [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -6]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}$ -4 t^2.899 + t^2.949 + 2*t^2.999 + t^3.102 + t^3.982 + t^3.984 + t^4.034 + t^4.084 + t^4.085 + t^4.966 + t^4.967 + t^5.067 + t^5.068 + t^5.51 + t^5.557 + t^5.559 + t^5.611 + t^5.798 + t^5.848 + 2*t^5.898 + 2*t^5.949 + 2*t^5.999 - 4*t^6. + t^6.051 + t^6.102 + t^6.204 + t^6.493 + t^6.54 + t^6.542 + t^6.594 + t^6.883 + t^6.932 + 2*t^6.933 + t^6.982 + t^6.983 + 3*t^7.033 + t^7.034 + 2*t^7.084 + 2*t^7.085 + t^7.086 + t^7.136 + t^7.186 + t^7.187 + t^7.374 - t^7.473 + t^7.476 + t^7.522 + t^7.524 + t^7.525 - t^7.527 - t^7.575 + t^7.578 + t^7.679 + t^7.866 + t^7.915 + t^7.916 + 2*t^7.965 + 2*t^7.966 + t^7.967 + t^8.016 + t^8.018 + 3*t^8.067 + 4*t^8.068 + 2*t^8.069 + t^8.168 + 2*t^8.169 + 2*t^8.17 - t^8.408 - t^8.455 - t^8.456 + t^8.459 + t^8.507 + t^8.508 - t^8.51 + t^8.557 - t^8.559 + t^8.561 + t^8.611 + t^8.66 + t^8.661 + t^8.697 + t^8.714 + t^8.747 + 2*t^8.797 + 2*t^8.848 + 3*t^8.898 - 3*t^8.899 + 3*t^8.948 - t^8.949 + t^8.95 + 2*t^8.998 - 7*t^8.999 + t^8.949/y^2 - t^3.983/y - t^4.966/y - t^6.882/y - t^6.932/y - (2*t^6.982)/y - t^7.085/y - t^7.865/y - t^7.915/y - (2*t^7.966)/y - t^8.068/y + t^8.848/y + (2*t^8.898)/y + t^8.949/y - t^8.95/y + t^8.999/y - t^3.983*y - t^4.966*y - t^6.882*y - t^6.932*y - 2*t^6.982*y - t^7.085*y - t^7.865*y - t^7.915*y - 2*t^7.966*y - t^8.068*y + t^8.848*y + 2*t^8.898*y + t^8.949*y - t^8.95*y + t^8.999*y + t^8.949*y^2 t^2.899/(g1*g2) + t^2.949/g3^3 + (2*g1*g2*t^2.999)/g3^6 + (g3^12*t^3.102)/(g1*g2) + (g1*g2*t^3.982)/g3^7 + (g3^5*t^3.984)/(g1*g2) + g3^2*t^4.034 + (g1*g2*t^4.084)/g3 + (g3^11*t^4.085)/(g1*g2) + (g1*g2*t^4.966)/g3^8 + (g3^4*t^4.967)/(g1*g2) + (g1*g2*t^5.067)/g3^2 + (g3^10*t^5.068)/(g1*g2) + (g2^3*t^5.51)/g3^13 + (g1*g3^11*t^5.557)/g2^2 + (g3^23*t^5.559)/(g1*g2^4) + (g2^3*t^5.611)/g3^7 + t^5.798/(g1^2*g2^2) + t^5.848/(g1*g2*g3^3) + (2*t^5.898)/g3^6 + (2*g1*g2*t^5.949)/g3^9 + (2*g1^2*g2^2*t^5.999)/g3^12 - 4*t^6. + (g3^9*t^6.051)/(g1*g2) + g3^6*t^6.102 + (g3^24*t^6.204)/(g1^2*g2^2) + (g2^3*t^6.493)/g3^14 + (g1*g3^10*t^6.54)/g2^2 + (g3^22*t^6.542)/(g1*g2^4) + (g2^3*t^6.594)/g3^8 + (g3^5*t^6.883)/(g1^2*g2^2) + (g1*g2*t^6.932)/g3^10 + (2*g3^2*t^6.933)/(g1*g2) + (g1^2*g2^2*t^6.982)/g3^13 + t^6.983/g3 + (3*g1*g2*t^7.033)/g3^4 + (g3^8*t^7.034)/(g1*g2) + (2*g1^2*g2^2*t^7.084)/g3^7 + 2*g3^5*t^7.085 + (g3^17*t^7.086)/(g1^2*g2^2) + (g3^14*t^7.136)/(g1*g2) + g3^11*t^7.186 + (g3^23*t^7.187)/(g1^2*g2^2) + (g2^3*t^7.374)/g3^21 - (g3^12*t^7.473)/g2^3 + (g2^3*t^7.476)/g3^15 + (g1^3*t^7.522)/g3^3 + (g1*g3^9*t^7.524)/g2^2 + (g3^21*t^7.525)/(g1*g2^4) - (g1*g2^4*t^7.526)/g3^18 + (g3^33*t^7.526)/(g1^3*g2^6) - (g2^2*t^7.527)/(g1*g3^6) - (g3^18*t^7.575)/g2^3 + (g2^3*t^7.578)/g3^9 + (g2^3*t^7.679)/g3^3 + (g3^4*t^7.866)/(g1^2*g2^2) + (g1*g2*t^7.915)/g3^11 + (g3*t^7.916)/(g1*g2) + (2*g1^2*g2^2*t^7.965)/g3^14 + (2*t^7.966)/g3^2 + (g3^10*t^7.967)/(g1^2*g2^2) + (g1*g2*t^8.016)/g3^5 + (g3^7*t^8.018)/(g1*g2) + (3*g1^2*g2^2*t^8.067)/g3^8 + 4*g3^4*t^8.068 + (2*g3^16*t^8.069)/(g1^2*g2^2) + (g1^2*g2^2*t^8.168)/g3^2 + 2*g3^10*t^8.169 + (2*g3^22*t^8.17)/(g1^2*g2^2) - (g1*g2^4*t^8.408)/g3^25 - (g1^2*t^8.455)/(g2*g3) - (g3^11*t^8.456)/g2^3 + (g2^3*t^8.459)/g3^16 + (g1*g3^8*t^8.507)/g2^2 + (g3^20*t^8.508)/(g1*g2^4) - (g2^2*t^8.51)/(g1*g3^7) + (g1^2*g3^5*t^8.557)/g2 - (g3^29*t^8.559)/(g1^2*g2^5) + (g2^3*t^8.561)/g3^10 + (g1*g2^4*t^8.611)/g3^13 + (g3^23*t^8.66)/g2^3 + (g3^35*t^8.661)/(g1^2*g2^5) + t^8.697/(g1^3*g2^3) + (g2^2*g3^5*t^8.714)/g1 + t^8.747/(g1^2*g2^2*g3^3) + (2*t^8.797)/(g1*g2*g3^6) + (2*t^8.848)/g3^9 + (3*g1*g2*t^8.898)/g3^12 - (3*t^8.899)/(g1*g2) + (3*g1^2*g2^2*t^8.948)/g3^15 - t^8.949/g3^3 + (g3^9*t^8.95)/(g1^2*g2^2) + (2*g1^3*g2^3*t^8.998)/g3^18 - (7*g1*g2*t^8.999)/g3^6 + t^8.949/(g3^3*y^2) - t^3.983/(g3*y) - t^4.966/(g3^2*y) - t^6.882/(g1*g2*g3*y) - t^6.932/(g3^4*y) - (2*g1*g2*t^6.982)/(g3^7*y) - (g3^11*t^7.085)/(g1*g2*y) - t^7.865/(g1*g2*g3^2*y) - t^7.915/(g3^5*y) - (2*g1*g2*t^7.966)/(g3^8*y) - (g3^10*t^8.068)/(g1*g2*y) + t^8.848/(g1*g2*g3^3*y) + (2*t^8.898)/(g3^6*y) + (g1*g2*t^8.949)/(g3^9*y) - (g3^3*t^8.95)/(g1*g2*y) + (g1^2*g2^2*t^8.999)/(g3^12*y) - (t^3.983*y)/g3 - (t^4.966*y)/g3^2 - (t^6.882*y)/(g1*g2*g3) - (t^6.932*y)/g3^4 - (2*g1*g2*t^6.982*y)/g3^7 - (g3^11*t^7.085*y)/(g1*g2) - (t^7.865*y)/(g1*g2*g3^2) - (t^7.915*y)/g3^5 - (2*g1*g2*t^7.966*y)/g3^8 - (g3^10*t^8.068*y)/(g1*g2) + (t^8.848*y)/(g1*g2*g3^3) + (2*t^8.898*y)/g3^6 + (g1*g2*t^8.949*y)/g3^9 - (g3^3*t^8.95*y)/(g1*g2) + (g1^2*g2^2*t^8.999*y)/g3^12 + (t^8.949*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57933 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4533 1.6405 0.8859 [X:[1.3351], M:[1.0026, 0.9922], q:[0.5092, 0.4935], qb:[0.4987, 0.5039], phi:[0.3325]] 2*t^2.98 + t^2.99 + t^3.01 + t^3.04 + t^3.97 + t^3.99 + t^4.01 + t^4.02 + t^4.04 + t^4.97 + t^4.99 + t^5.02 + t^5.03 + t^5.49 + t^5.5 + t^5.52 + t^5.53 + 2*t^5.95 + 2*t^5.97 + 2*t^5.98 - 3*t^6. - t^4./y - t^4.99/y - t^4.*y - t^4.99*y detail
57934 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4751 1.681 0.8775 [X:[1.3445], M:[0.966, 1.0004, 0.6719], q:[0.5079, 0.5086], qb:[0.4917, 0.5254], phi:[0.3277]] t^2.02 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + t^4.08 + t^4.09 + t^4.91 + 3*t^4.97 + 2*t^5.02 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. - t^3.98/y - t^4.97/y - t^6./y - t^3.98*y - t^4.97*y - t^6.*y detail
57930 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.4457 1.6292 0.8874 [X:[1.3547], M:[0.9118, 1.024], q:[0.5271, 0.5751], qb:[0.4489, 0.513], phi:[0.3226]] t^2.74 + t^2.9 + 2*t^3.07 + t^3.12 + t^3.9 + t^4.04 + t^4.06 + t^4.09 + t^4.23 + t^4.86 + t^5.01 + t^5.06 + 2*t^5.2 + t^5.39 + t^5.47 + t^5.64 + 2*t^5.81 + t^5.86 + 2*t^5.98 - 3*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y detail
57926 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ 1.1477 1.3025 0.8812 [X:[1.5082], M:[0.7049, 0.7705], q:[0.8497, 0.3907], qb:[0.3798, 0.9044], phi:[0.2459]] t^2.11 + t^2.21 + 2*t^2.31 + t^3.05 + t^3.79 + t^4.23 + t^4.33 + 3*t^4.43 + 3*t^4.52 + 3*t^4.62 + t^5.16 + 2*t^5.26 + 2*t^5.36 + 2*t^5.63 + 2*t^5.73 - 2*t^6. - t^3.74/y - t^4.48/y - t^5.85/y - t^5.95/y - t^3.74*y - t^4.48*y - t^5.85*y - t^5.95*y detail
57931 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4459 1.6293 0.8875 [X:[1.3553], M:[0.959, 0.975], q:[0.5759, 0.5258], qb:[0.4491, 0.5151], phi:[0.3223]] t^2.88 + t^2.9 + 2*t^2.92 + t^3.27 + t^3.89 + t^4.04 + t^4.07 + t^4.09 + t^4.24 + t^4.86 + t^5.01 + t^5.06 + 2*t^5.21 + t^5.41 + t^5.75 + t^5.78 + 2*t^5.8 + 2*t^5.83 + 3*t^5.85 - 3*t^6. - t^3.97/y - t^4.93/y - t^3.97*y - t^4.93*y detail
57932 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.4489 1.6313 0.8882 [X:[1.3603], M:[0.9201, 0.999], q:[0.4949, 0.4928], qb:[0.5061, 0.587], phi:[0.3198]] t^2.76 + t^2.88 + 2*t^3. + t^3.25 + 2*t^3.96 + t^4.08 + t^4.2 + t^4.21 + 2*t^4.92 + 2*t^5.16 + t^5.4 + t^5.41 + t^5.52 + t^5.64 + 3*t^5.76 + 2*t^5.88 + 2*t^5.99 - 3*t^6. - t^3.96/y - t^4.92/y - t^3.96*y - t^4.92*y detail
57929 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4397 1.6242 0.8864 [X:[1.3493], M:[0.9525, 0.9997], q:[0.4581, 0.4574], qb:[0.5423, 0.5901], phi:[0.3254]] t^2.86 + t^2.93 + 2*t^3. + t^3.14 + 2*t^3.98 + t^4.05 + 2*t^4.12 + 2*t^4.95 + 2*t^5.09 + 2*t^5.1 + t^5.72 + t^5.79 + 2*t^5.86 + 2*t^5.93 - t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y detail
57928 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ 1.3508 1.5206 0.8883 [X:[1.4275], M:[0.8623, 0.8551], q:[0.7162, 0.4263], qb:[0.4287, 0.7114], phi:[0.2862]] 2*t^2.57 + t^2.58 + t^2.59 + t^3.42 + t^4.27 + 3*t^4.28 + t^4.29 + 3*t^5.13 + 3*t^5.14 + 3*t^5.15 + t^5.16 + t^5.17 + 2*t^5.57 + t^5.99 - 2*t^6. - t^3.86/y - t^4.72/y - t^3.86*y - t^4.72*y detail
57927 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ 1.194 1.3637 0.8755 [X:[1.284, 1.4321], M:[0.8641, 1.284], q:[0.214, 0.7819], qb:[0.502, 0.354], phi:[0.358]] t^2.59 + t^2.78 + 2*t^3.22 + 4*t^3.85 + t^4.3 + t^4.48 + 2*t^4.7 + t^4.93 + 2*t^5.15 + t^5.18 + t^5.56 + 2*t^5.78 + 2*t^5.81 - t^6. - t^4.07/y - t^5.15/y - t^4.07*y - t^5.15*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47886 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4552 1.6417 0.8864 [X:[1.3445], M:[0.9482], q:[0.49, 0.5268], qb:[0.4916, 0.525], phi:[0.3278]] t^2.845 + t^2.945 + t^2.95 + t^3.045 + t^3.055 + t^3.928 + t^4.028 + t^4.033 + t^4.038 + t^4.139 + t^4.911 + t^5.012 + t^5.022 + t^5.122 + t^5.504 + t^5.508 + t^5.608 + t^5.614 + t^5.689 + t^5.789 + t^5.794 + t^5.89 + t^5.895 + t^5.9 + t^5.99 + t^5.995 - 3*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y detail