Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57934 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4751 | 1.681 | 0.8775 | [X:[1.3445], M:[0.966, 1.0004, 0.6719], q:[0.5079, 0.5086], qb:[0.4917, 0.5254], phi:[0.3277]] | [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -6], [-1, -1, 7]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}M_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$ | -1 | t^2.02 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + t^4.08 + t^4.09 + t^4.91 + 3*t^4.97 + 2*t^5.02 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. + 3*t^6.05 + 3*t^6.1 + t^6.2 + t^6.49 + 2*t^6.54 + t^6.59 + 3*t^6.93 + 4*t^6.98 - t^6.99 + 6*t^7.03 + 4*t^7.08 + 2*t^7.09 + 2*t^7.13 + 2*t^7.18 + t^7.38 - t^7.47 + t^7.48 + 2*t^7.52 + t^7.53 + t^7.57 + t^7.58 + t^7.63 + t^7.68 + t^7.81 + 2*t^7.86 + 3*t^7.91 + t^7.92 + t^7.96 + 4*t^7.97 + t^8.01 - t^8.02 + 5*t^8.06 + 5*t^8.07 + t^8.11 + 2*t^8.12 + 5*t^8.17 + t^8.21 - t^8.41 - t^8.46 + 2*t^8.51 + 3*t^8.56 + 2*t^8.61 + 2*t^8.66 + t^8.69 + t^8.71 + t^8.75 + 2*t^8.8 + 2*t^8.85 + t^8.94 + 3*t^8.95 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6./y - t^6.88/y - t^6.93/y - (3*t^6.98)/y - t^7.08/y - t^7.86/y + t^7.91/y - t^7.92/y - t^8.01/y + (2*t^8.02)/y - t^8.07/y + t^8.12/y + t^8.85/y + t^8.9/y - t^3.98*y - t^4.97*y - t^6.*y - t^6.88*y - t^6.93*y - 3*t^6.98*y - t^7.08*y - t^7.86*y + t^7.91*y - t^7.92*y - t^8.01*y + 2*t^8.02*y - t^8.07*y + t^8.12*y + t^8.85*y + t^8.9*y + t^8.95*y^2 | (g3^7*t^2.02)/(g1*g2) + t^2.9/(g1*g2) + t^2.95/g3^3 + (2*g1*g2*t^3.)/g3^6 + (g3^12*t^3.1)/(g1*g2) + (g3^5*t^3.98)/(g1*g2) + g3^2*t^4.03 + (g3^14*t^4.03)/(g1^2*g2^2) + (g3^11*t^4.08)/(g1*g2) + (g1*g2*t^4.09)/g3 + (g3^7*t^4.91)/(g1^2*g2^2) + (g1*g2*t^4.97)/g3^8 + (2*g3^4*t^4.97)/(g1*g2) + 2*g3*t^5.02 + (g1*g2*t^5.07)/g3^2 + (g3^10*t^5.07)/(g1*g2) + (g3^19*t^5.12)/(g1^2*g2^2) + (g2^3*t^5.51)/g3^13 + (g1*g3^11*t^5.56)/g2^2 + (g3^23*t^5.56)/(g1*g2^4) + (g2^3*t^5.61)/g3^7 + t^5.8/(g1^2*g2^2) + t^5.85/(g1*g2*g3^3) + (2*t^5.9)/g3^6 + (2*g1*g2*t^5.95)/g3^9 - 4*t^6. + (2*g1^2*g2^2*t^6.)/g3^12 + (g3^12*t^6.)/(g1^2*g2^2) + (2*g3^9*t^6.05)/(g1*g2) + (g3^21*t^6.05)/(g1^3*g2^3) + 2*g3^6*t^6.1 + (g3^18*t^6.1)/(g1^2*g2^2) + (g3^24*t^6.2)/(g1^2*g2^2) + (g2^3*t^6.49)/g3^14 + (g1*g3^10*t^6.54)/g2^2 + (g3^22*t^6.54)/(g1*g2^4) + (g2^3*t^6.59)/g3^8 - t^6.88/g3^7 + (g3^5*t^6.88)/(g1^2*g2^2) + (2*g3^2*t^6.93)/(g1*g2) + (g3^14*t^6.93)/(g1^3*g2^3) + (2*t^6.98)/g3 + (2*g3^11*t^6.98)/(g1^2*g2^2) - (g1^2*g2^2*t^6.99)/g3^13 + (3*g1*g2*t^7.03)/g3^4 + (3*g3^8*t^7.03)/(g1*g2) + 2*g3^5*t^7.08 + (2*g3^17*t^7.08)/(g1^2*g2^2) + (2*g1^2*g2^2*t^7.09)/g3^7 + (g3^14*t^7.13)/(g1*g2) + (g3^26*t^7.13)/(g1^3*g2^3) + g3^11*t^7.18 + (g3^23*t^7.18)/(g1^2*g2^2) + (g2^3*t^7.38)/g3^21 - (g3^12*t^7.47)/g2^3 + (g2^3*t^7.48)/g3^15 + (g3^21*t^7.52)/(g1*g2^4) + (g3^33*t^7.52)/(g1^3*g2^6) - (g1*g2^4*t^7.53)/g3^18 + (g1^3*t^7.53)/g3^3 + (g1*g3^9*t^7.53)/g2^2 + (g3^30*t^7.57)/(g1^2*g2^5) + (g2^3*t^7.58)/g3^9 + (g2^2*t^7.63)/g1 + (g2^3*t^7.68)/g3^3 + (g3^7*t^7.81)/(g1^3*g2^3) + (2*g3^4*t^7.86)/(g1^2*g2^2) + (3*g3*t^7.91)/(g1*g2) + (g1*g2*t^7.92)/g3^11 + (g3^10*t^7.96)/(g1^2*g2^2) + (g1^2*g2^2*t^7.97)/g3^14 + (3*t^7.97)/g3^2 + (g3^19*t^8.01)/(g1^3*g2^3) + (2*g1*g2*t^8.02)/g3^5 - (3*g3^7*t^8.02)/(g1*g2) + (4*g3^16*t^8.06)/(g1^2*g2^2) + (g3^28*t^8.06)/(g1^4*g2^4) + (2*g1^2*g2^2*t^8.07)/g3^8 + 3*g3^4*t^8.07 + (g3^25*t^8.11)/(g1^3*g2^3) + (2*g3^13*t^8.12)/(g1*g2) + (g1^2*g2^2*t^8.17)/g3^2 + 2*g3^10*t^8.17 + (2*g3^22*t^8.17)/(g1^2*g2^2) + (g3^31*t^8.21)/(g1^3*g2^3) - (g1*g2^4*t^8.41)/g3^25 + (g2^3*t^8.46)/g3^16 - (g1^2*t^8.46)/(g2*g3) - (g3^11*t^8.46)/g2^3 + (g1*g3^8*t^8.51)/g2^2 + (g3^20*t^8.51)/(g1*g2^4) + (g2^3*t^8.56)/g3^10 + (g1^2*g3^5*t^8.56)/g2 + (g3^17*t^8.56)/g2^3 + (g1*g2^4*t^8.61)/g3^13 + (g2^2*t^8.61)/(g1*g3) + (g3^23*t^8.66)/g2^3 + (g3^35*t^8.66)/(g1^2*g2^5) + t^8.69/(g1^3*g2^3) + (g2^2*g3^5*t^8.71)/g1 + t^8.75/(g1^2*g2^2*g3^3) + (2*t^8.8)/(g1*g2*g3^6) + (2*t^8.85)/g3^9 - (4*t^8.9)/(g1*g2) + (3*g1*g2*t^8.9)/g3^12 + (g3^12*t^8.9)/(g1^3*g2^3) + (g3^21*t^8.94)/(g1^4*g2^4) + (2*g1^2*g2^2*t^8.95)/g3^15 - (2*t^8.95)/g3^3 + (3*g3^9*t^8.95)/(g1^2*g2^2) + t^8.95/(g3^3*y^2) - t^3.98/(g3*y) - t^4.97/(g3^2*y) - (g3^6*t^6.)/(g1*g2*y) - t^6.88/(g1*g2*g3*y) - t^6.93/(g3^4*y) - (2*g1*g2*t^6.98)/(g3^7*y) - (g3^5*t^6.98)/(g1*g2*y) - (g3^11*t^7.08)/(g1*g2*y) - t^7.86/(g1*g2*g3^2*y) + (g3^7*t^7.91)/(g1^2*g2^2*y) - t^7.92/(g3^5*y) - (g1*g2*t^7.97)/(g3^8*y) + (g3^4*t^7.97)/(g1*g2*y) - (g3^13*t^8.01)/(g1^2*g2^2*y) + (2*g3*t^8.02)/y - (g3^10*t^8.07)/(g1*g2*y) + (g3^19*t^8.12)/(g1^2*g2^2*y) + t^8.85/(g1*g2*g3^3*y) + (2*t^8.9)/(g3^6*y) - (g3^6*t^8.9)/(g1^2*g2^2*y) + (2*g1*g2*t^8.95)/(g3^9*y) - (2*g3^3*t^8.95)/(g1*g2*y) - (t^3.98*y)/g3 - (t^4.97*y)/g3^2 - (g3^6*t^6.*y)/(g1*g2) - (t^6.88*y)/(g1*g2*g3) - (t^6.93*y)/g3^4 - (2*g1*g2*t^6.98*y)/g3^7 - (g3^5*t^6.98*y)/(g1*g2) - (g3^11*t^7.08*y)/(g1*g2) - (t^7.86*y)/(g1*g2*g3^2) + (g3^7*t^7.91*y)/(g1^2*g2^2) - (t^7.92*y)/g3^5 - (g1*g2*t^7.97*y)/g3^8 + (g3^4*t^7.97*y)/(g1*g2) - (g3^13*t^8.01*y)/(g1^2*g2^2) + 2*g3*t^8.02*y - (g3^10*t^8.07*y)/(g1*g2) + (g3^19*t^8.12*y)/(g1^2*g2^2) + (t^8.85*y)/(g1*g2*g3^3) + (2*t^8.9*y)/g3^6 - (g3^6*t^8.9*y)/(g1^2*g2^2) + (2*g1*g2*t^8.95*y)/g3^9 - (2*g3^3*t^8.95*y)/(g1*g2) + (t^8.95*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57278 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4543 | 1.6397 | 0.8869 | [X:[1.3446], M:[0.9663, 0.9998], q:[0.5085, 0.5081], qb:[0.4917, 0.5255], phi:[0.3277]] | t^2.899 + t^2.949 + 2*t^2.999 + t^3.102 + t^3.982 + t^3.984 + t^4.034 + t^4.084 + t^4.085 + t^4.966 + t^4.967 + t^5.067 + t^5.068 + t^5.51 + t^5.557 + t^5.559 + t^5.611 + t^5.798 + t^5.848 + 2*t^5.898 + 2*t^5.949 + 2*t^5.999 - 4*t^6. - t^3.983/y - t^4.966/y - t^3.983*y - t^4.966*y | detail |