Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57933 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4533 | 1.6405 | 0.8859 | [X:[1.3351], M:[1.0026, 0.9922], q:[0.5092, 0.4935], qb:[0.4987, 0.5039], phi:[0.3325]] | [X:[[0, 2]], M:[[0, 3], [0, -9]], q:[[-1, 15], [-1, -3]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{6}$ | ${}$ | -3 | 2*t^2.98 + t^2.99 + t^3.01 + t^3.04 + t^3.97 + t^3.99 + t^4.01 + t^4.02 + t^4.04 + t^4.97 + t^4.99 + t^5.02 + t^5.03 + t^5.49 + t^5.5 + t^5.52 + t^5.53 + 2*t^5.95 + 2*t^5.97 + 2*t^5.98 - 3*t^6. + 2*t^6.02 + t^6.03 + t^6.08 + t^6.48 + t^6.5 + t^6.51 + t^6.53 + t^6.95 + 3*t^6.97 + 3*t^6.98 + t^7. + 4*t^7.01 + 3*t^7.03 + t^7.04 + t^7.06 + t^7.08 + t^7.43 + t^7.48 + t^7.53 + t^7.57 + 2*t^7.95 + 4*t^7.96 + 2*t^7.98 + 2*t^7.99 + 5*t^8.01 + 4*t^8.03 + t^8.04 + 2*t^8.06 + 2*t^8.07 - t^8.45 + t^8.48 + t^8.49 + t^8.51 - t^8.52 + 2*t^8.53 + t^8.57 + 2*t^8.93 + 3*t^8.95 + 5*t^8.96 - 4*t^8.98 + t^8.99 + t^8.99/y^2 - t^4./y - t^4.99/y - (2*t^6.97)/y - t^6.99/y - t^7.01/y - t^7.04/y - (2*t^7.97)/y - t^7.99/y - t^8./y - t^8.03/y + t^8.95/y + t^8.97/y + t^8.98/y - t^4.*y - t^4.99*y - 2*t^6.97*y - t^6.99*y - t^7.01*y - t^7.04*y - 2*t^7.97*y - t^7.99*y - t^8.*y - t^8.03*y + t^8.95*y + t^8.97*y + t^8.98*y + t^8.99*y^2 | (2*t^2.98)/g2^9 + t^2.99/g2^3 + g2^3*t^3.01 + g2^15*t^3.04 + t^3.97/g2^10 + t^3.99/g2^4 + g2^2*t^4.01 + g2^8*t^4.02 + g2^14*t^4.04 + t^4.97/g2^11 + t^4.99/g2^5 + g2^7*t^5.02 + g2^13*t^5.03 + (g2^8*t^5.49)/g1^3 + (g1^3*t^5.5)/g2^13 + (g1^3*t^5.52)/g2^7 + (g2^26*t^5.53)/g1^3 + (2*t^5.95)/g2^18 + (2*t^5.97)/g2^12 + (2*t^5.98)/g2^6 - 3*t^6. + 2*g2^6*t^6.02 + g2^12*t^6.03 + g2^30*t^6.08 + (g2^7*t^6.48)/g1^3 + (g1^3*t^6.5)/g2^14 + (g1^3*t^6.51)/g2^8 + (g2^25*t^6.53)/g1^3 + t^6.95/g2^19 + (3*t^6.97)/g2^13 + (3*t^6.98)/g2^7 + t^7./g2 + 4*g2^5*t^7.01 + 3*g2^11*t^7.03 + g2^17*t^7.04 + g2^23*t^7.06 + g2^29*t^7.08 + t^7.43/(g1^3*g2^12) + (g2^6*t^7.48)/g1^3 + (g1^3*t^7.5)/g2^15 - (g2^12*t^7.5)/g1^3 + (g1^3*t^7.51)/g2^9 - (g2^18*t^7.51)/g1^3 + (g2^24*t^7.53)/g1^3 + (g2^42*t^7.57)/g1^3 + (2*t^7.95)/g2^20 + (4*t^7.96)/g2^14 + (2*t^7.98)/g2^8 + (2*t^7.99)/g2^2 + 5*g2^4*t^8.01 + 4*g2^10*t^8.03 + g2^16*t^8.04 + 2*g2^22*t^8.06 + 2*g2^28*t^8.07 - t^8.45/(g1^3*g2^7) - (g1^3*t^8.46)/g2^28 + t^8.46/(g1^3*g2) + (g2^5*t^8.48)/g1^3 + (2*g1^3*t^8.49)/g2^16 - (g2^11*t^8.49)/g1^3 + (g1^3*t^8.51)/g2^10 - (g1^3*t^8.52)/g2^4 + (2*g2^23*t^8.53)/g1^3 + g1^3*g2^8*t^8.56 - (g2^35*t^8.56)/g1^3 + (g2^41*t^8.57)/g1^3 + (2*t^8.93)/g2^27 + (3*t^8.95)/g2^21 + (5*t^8.96)/g2^15 - (4*t^8.98)/g2^9 + t^8.99/g2^3 + t^8.99/(g2^3*y^2) - t^4./(g2*y) - t^4.99/(g2^2*y) - (2*t^6.97)/(g2^10*y) - t^6.99/(g2^4*y) - (g2^2*t^7.01)/y - (g2^14*t^7.04)/y - (2*t^7.97)/(g2^11*y) - t^7.99/(g2^5*y) - (g2*t^8.)/y - (g2^13*t^8.03)/y + t^8.95/(g2^18*y) + t^8.97/(g2^12*y) + t^8.98/(g2^6*y) - (t^4.*y)/g2 - (t^4.99*y)/g2^2 - (2*t^6.97*y)/g2^10 - (t^6.99*y)/g2^4 - g2^2*t^7.01*y - g2^14*t^7.04*y - (2*t^7.97*y)/g2^11 - (t^7.99*y)/g2^5 - g2*t^8.*y - g2^13*t^8.03*y + (t^8.95*y)/g2^18 + (t^8.97*y)/g2^12 + (t^8.98*y)/g2^6 + (t^8.99*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57278 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4543 | 1.6397 | 0.8869 | [X:[1.3446], M:[0.9663, 0.9998], q:[0.5085, 0.5081], qb:[0.4917, 0.5255], phi:[0.3277]] | t^2.899 + t^2.949 + 2*t^2.999 + t^3.102 + t^3.982 + t^3.984 + t^4.034 + t^4.084 + t^4.085 + t^4.966 + t^4.967 + t^5.067 + t^5.068 + t^5.51 + t^5.557 + t^5.559 + t^5.611 + t^5.798 + t^5.848 + 2*t^5.898 + 2*t^5.949 + 2*t^5.999 - 4*t^6. - t^3.983/y - t^4.966/y - t^3.983*y - t^4.966*y | detail |