Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57274 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 1.474 1.6826 0.876 [X:[1.3323], M:[0.6693], q:[0.4977, 0.5008], qb:[0.5023, 0.4961], phi:[0.3339]] [X:[[0, 2]], M:[[0, -5]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -2 t^2.008 + t^2.981 + t^2.991 + t^3. + t^3.005 + t^3.009 + t^3.983 + t^3.997 + t^4.002 + t^4.011 + t^4.016 + t^4.984 + t^4.989 + t^4.994 + t^4.998 + t^5.003 + t^5.008 + 2*t^5.012 + t^5.017 + t^5.485 + t^5.49 + t^5.499 + t^5.504 + t^5.963 + t^5.972 + t^5.981 + t^5.986 + 2*t^5.991 + t^5.995 - 2*t^6. + 2*t^6.005 + 2*t^6.009 + t^6.014 + t^6.019 + t^6.023 + t^6.487 + t^6.491 + t^6.501 + t^6.505 + t^6.964 + t^6.974 + t^6.978 + t^6.983 + 2*t^6.988 + 3*t^6.992 + 2*t^6.997 + t^7.002 + 3*t^7.006 + 2*t^7.011 + 2*t^7.016 + 2*t^7.02 + t^7.025 + t^7.47 + t^7.484 + t^7.493 + t^7.498 + t^7.507 + 2*t^7.512 + t^7.526 + 2*t^7.966 + t^7.971 + 2*t^7.975 + t^7.98 + 3*t^7.984 + t^7.989 + 5*t^7.994 + 3*t^7.998 + 3*t^8.003 - t^8.008 + 4*t^8.012 + 3*t^8.017 + 2*t^8.022 + t^8.026 + t^8.031 + t^8.467 + t^8.471 + t^8.481 + t^8.485 + t^8.49 + 2*t^8.495 + t^8.499 + t^8.509 + t^8.513 - t^8.518 - t^8.523 + t^8.944 + t^8.953 + t^8.963 + 2*t^8.967 + 2*t^8.972 + 2*t^8.977 - 2*t^8.981 + 4*t^8.986 - t^8.991 + 5*t^8.995 - t^4.002/y - t^5.003/y - t^6.009/y - t^6.983/y - t^6.992/y - t^7.002/y - t^7.006/y - (2*t^7.011)/y - t^7.984/y + t^7.989/y + t^7.998/y - t^8.003/y + t^8.972/y + t^8.981/y + (2*t^8.991)/y + t^8.995/y - t^4.002*y - t^5.003*y - t^6.009*y - t^6.983*y - t^6.992*y - t^7.002*y - t^7.006*y - 2*t^7.011*y - t^7.984*y + t^7.989*y + t^7.998*y - t^8.003*y + t^8.972*y + t^8.981*y + 2*t^8.991*y + t^8.995*y t^2.008/g2^5 + g2^12*t^2.981 + g2^6*t^2.991 + t^3. + t^3.005/g2^3 + t^3.009/g2^6 + g2^11*t^3.983 + g2^2*t^3.997 + t^4.002/g2 + t^4.011/g2^7 + t^4.016/g2^10 + g2^10*t^4.984 + g2^7*t^4.989 + g2^4*t^4.994 + g2*t^4.998 + t^5.003/g2^2 + t^5.008/g2^5 + (2*t^5.012)/g2^8 + t^5.017/g2^11 + (g1^3*t^5.485)/g2^13 + (g2^29*t^5.49)/g1^3 + (g2^23*t^5.499)/g1^3 + (g1^3*t^5.504)/g2^25 + g2^24*t^5.963 + g2^18*t^5.972 + g2^12*t^5.981 + g2^9*t^5.986 + 2*g2^6*t^5.991 + g2^3*t^5.995 - 2*t^6. + (2*t^6.005)/g2^3 + (2*t^6.009)/g2^6 + t^6.014/g2^9 + t^6.019/g2^12 + t^6.023/g2^15 + (g1^3*t^6.487)/g2^14 + (g2^28*t^6.491)/g1^3 + (g2^22*t^6.501)/g1^3 + (g1^3*t^6.505)/g2^26 + g2^23*t^6.964 + g2^17*t^6.974 + g2^14*t^6.978 + g2^11*t^6.983 + 2*g2^8*t^6.988 + 3*g2^5*t^6.992 + 2*g2^2*t^6.997 + t^7.002/g2 + (3*t^7.006)/g2^4 + (2*t^7.011)/g2^7 + (2*t^7.016)/g2^10 + (2*t^7.02)/g2^13 + t^7.025/g2^16 + (g1^3*t^7.47)/g2^3 + (g2^33*t^7.484)/g1^3 + (g1^3*t^7.488)/g2^15 - (g2^30*t^7.488)/g1^3 + (g2^27*t^7.493)/g1^3 + (g2^24*t^7.498)/g1^3 - (g1^3*t^7.502)/g2^24 + (g2^21*t^7.502)/g1^3 + (g1^3*t^7.507)/g2^27 + (g1^3*t^7.512)/g2^30 + (g2^15*t^7.512)/g1^3 + (g1^3*t^7.526)/g2^39 + 2*g2^22*t^7.966 + g2^19*t^7.971 + 2*g2^16*t^7.975 + g2^13*t^7.98 + 3*g2^10*t^7.984 + g2^7*t^7.989 + 5*g2^4*t^7.994 + 3*g2*t^7.998 + (3*t^8.003)/g2^2 - t^8.008/g2^5 + (4*t^8.012)/g2^8 + (3*t^8.017)/g2^11 + (2*t^8.022)/g2^14 + t^8.026/g2^17 + t^8.031/g2^20 + (g1^3*t^8.467)/g2 + (g2^41*t^8.471)/g1^3 + (g2^35*t^8.481)/g1^3 + (g1^3*t^8.485)/g2^13 + (g1^3*t^8.49)/g2^16 + (g1^3*t^8.495)/g2^19 + (g2^26*t^8.495)/g1^3 + (g2^23*t^8.499)/g1^3 - (g1^3*t^8.504)/g2^25 + (g2^20*t^8.504)/g1^3 + (g1^3*t^8.509)/g2^28 + (g1^3*t^8.513)/g2^31 - (g2^11*t^8.518)/g1^3 - (g1^3*t^8.523)/g2^37 + g2^36*t^8.944 + g2^30*t^8.953 + g2^24*t^8.963 + 2*g2^21*t^8.967 + 2*g2^18*t^8.972 + 2*g2^15*t^8.977 - 2*g2^12*t^8.981 + 4*g2^9*t^8.986 - g2^6*t^8.991 + 5*g2^3*t^8.995 - t^4.002/(g2*y) - t^5.003/(g2^2*y) - t^6.009/(g2^6*y) - (g2^11*t^6.983)/y - (g2^5*t^6.992)/y - t^7.002/(g2*y) - t^7.006/(g2^4*y) - (2*t^7.011)/(g2^7*y) - (g2^10*t^7.984)/y + (g2^7*t^7.989)/y + (g2*t^7.998)/y - t^8.003/(g2^2*y) + (g2^18*t^8.972)/y + (g2^12*t^8.981)/y + (2*g2^6*t^8.991)/y + (g2^3*t^8.995)/y - (t^4.002*y)/g2 - (t^5.003*y)/g2^2 - (t^6.009*y)/g2^6 - g2^11*t^6.983*y - g2^5*t^6.992*y - (t^7.002*y)/g2 - (t^7.006*y)/g2^4 - (2*t^7.011*y)/g2^7 - g2^10*t^7.984*y + g2^7*t^7.989*y + g2*t^7.998*y - (t^8.003*y)/g2^2 + g2^18*t^8.972*y + g2^12*t^8.981*y + 2*g2^6*t^8.991*y + g2^3*t^8.995*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57761 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ 1.212 1.4073 0.8612 [X:[1.25, 1.5], M:[0.875], q:[0.2917, 0.5417], qb:[0.7083, 0.2083], phi:[0.375]] t^2.25 + 2*t^2.62 + t^3. + t^3.38 + 3*t^3.75 + t^4.12 + 4*t^4.5 + 3*t^4.88 + 6*t^5.25 + 4*t^5.62 + 5*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y detail {a: 19857/16384, c: 23057/16384, X1: 5/4, X2: 3/2, M1: 7/8, q1: 7/24, q2: 13/24, qb1: 17/24, qb2: 5/24, phi1: 3/8}
57758 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{2}$ 1.1983 1.3501 0.8876 [X:[1.4286, 1.5714], M:[0.4286], q:[0.6786, 0.3929], qb:[0.3214, 0.8929], phi:[0.2857]] t^2.14 + t^2.57 + 2*t^3. + 3*t^3.86 + t^4.29 + 4*t^4.71 + t^5.14 + t^5.25 + 2*t^5.46 + 4*t^5.57 - t^3.86/y - t^4.71/y - t^6./y - t^3.86*y - t^4.71*y - t^6.*y detail {a: 52611/43904, c: 59275/43904, X1: 10/7, X2: 11/7, M1: 3/7, q1: 19/28, q2: 11/28, qb1: 9/28, qb2: 25/28, phi1: 2/7}
57833 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ 1.3249 1.5238 0.8695 [X:[1.2727, 1.3636], M:[0.8182], q:[0.3523, 0.5341], qb:[0.6477, 0.2841], phi:[0.3636]] 2*t^2.45 + 2*t^3. + t^3.27 + t^3.55 + t^3.82 + 3*t^4.09 + 2*t^4.64 + t^4.74 + t^4.81 + 2*t^4.91 + t^5.18 + t^5.35 + 3*t^5.45 + 3*t^5.73 + 3*t^5.83 + t^5.9 - t^4.09/y - t^5.18/y - t^4.09*y - t^5.18*y detail {a: 451443/340736, c: 519203/340736, X1: 14/11, X2: 15/11, M1: 9/11, q1: 31/88, q2: 47/88, qb1: 57/88, qb2: 25/88, phi1: 4/11}
57837 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4948 1.7239 0.8671 [X:[1.3325], M:[0.6687, 0.6712], q:[0.4981, 0.5006], qb:[0.5019, 0.4969], phi:[0.3337]] 2*t^2.01 + 2*t^2.99 + 2*t^3. + t^3.01 + 2*t^4. + 2*t^4.01 + t^4.02 + t^4.03 + 2*t^4.99 + 4*t^5. + 6*t^5.01 + 2*t^5.02 + 2*t^5.49 + 2*t^5.5 + t^5.97 + t^5.98 + 3*t^5.99 + t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y detail
57835 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4743 1.6836 0.8757 [X:[1.3302], M:[0.6744, 0.9954], q:[0.493, 0.5023], qb:[0.507, 0.4884], phi:[0.3349]] t^2.02 + t^2.94 + t^2.97 + t^2.99 + t^3. + t^3.03 + t^3.95 + t^3.99 + t^4. + t^4.03 + t^4.05 + t^4.95 + t^4.97 + t^4.98 + t^5. + 2*t^5.01 + t^5.02 + t^5.04 + t^5.05 + t^5.46 + t^5.47 + t^5.5 + t^5.51 + t^5.89 + t^5.92 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.99 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
57836 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4749 1.6853 0.8751 [X:[1.3282], M:[0.6795, 0.9846], q:[0.4884, 0.5038], qb:[0.5116, 0.4809], phi:[0.3359]] t^2.04 + t^2.91 + 2*t^2.95 + t^3. + t^3.02 + t^3.92 + t^3.98 + t^4.01 + t^4.05 + t^4.08 + t^4.92 + t^4.95 + t^4.97 + 2*t^4.99 + t^5.02 + t^5.04 + 2*t^5.06 + t^5.43 + t^5.45 + t^5.5 + t^5.52 + t^5.82 + 2*t^5.86 + 3*t^5.91 + t^5.93 + 2*t^5.95 + 2*t^5.98 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57834 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4589 1.6682 0.8746 [X:[1.3291], M:[0.6773], q:[0.4366, 0.4494], qb:[0.5634, 0.5378], phi:[0.3355]] t^2.03 + t^2.92 + t^2.96 + t^3. + t^3.02 + t^3.04 + t^3.93 + t^3.99 + t^4.01 + t^4.04 + t^4.06 + t^4.94 + t^4.96 + 2*t^4.97 + t^4.99 + 2*t^5.01 + t^5.03 + 2*t^5.05 + t^5.07 + t^5.85 + t^5.88 + 2*t^5.92 + t^5.94 + 2*t^5.96 + 2*t^5.98 - t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47883 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4532 1.6411 0.8855 [X:[1.3322], q:[0.4975, 0.5008], qb:[0.5025, 0.4959], phi:[0.3339]] t^2.98 + t^2.99 + t^3. + t^3.005 + t^3.01 + t^3.982 + t^3.992 + t^3.997 + t^4.002 + t^4.011 + t^4.984 + t^4.993 + t^5.003 + t^5.013 + t^5.484 + t^5.489 + t^5.499 + t^5.504 + t^5.961 + t^5.971 + t^5.98 + t^5.985 + t^5.99 + t^5.995 - 2*t^6. - t^4.002/y - t^5.003/y - t^4.002*y - t^5.003*y detail