Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57837 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4948 1.7239 0.8671 [X:[1.3325], M:[0.6687, 0.6712], q:[0.4981, 0.5006], qb:[0.5019, 0.4969], phi:[0.3337]] [X:[[0, 2]], M:[[0, -5], [0, -11]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}X_{1}$ 1 2*t^2.01 + 2*t^2.99 + 2*t^3. + t^3.01 + 2*t^4. + 2*t^4.01 + t^4.02 + t^4.03 + 2*t^4.99 + 4*t^5. + 6*t^5.01 + 2*t^5.02 + 2*t^5.49 + 2*t^5.5 + t^5.97 + t^5.98 + 3*t^5.99 + t^6. + 6*t^6.01 + 2*t^6.02 + 2*t^6.03 + t^6.04 + 2*t^6.49 + 2*t^6.5 + t^6.98 + 3*t^6.99 + 8*t^7. + 7*t^7.01 + 8*t^7.02 + 4*t^7.03 + t^7.48 + 2*t^7.49 + 2*t^7.5 + 5*t^7.51 + 2*t^7.52 + t^7.97 + 4*t^7.98 + 4*t^7.99 + 11*t^8. + 6*t^8.01 + 10*t^8.02 + 3*t^8.03 + 2*t^8.04 + 2*t^8.05 + t^8.47 + 2*t^8.48 + 2*t^8.49 + 4*t^8.5 + 3*t^8.51 + 2*t^8.96 + 2*t^8.97 + 2*t^8.98 - 2*t^8.99 - t^4./y - t^5./y - (2*t^6.01)/y - (2*t^6.99)/y - (2*t^7.)/y - (2*t^7.01)/y + t^7.99/y + t^8./y + (2*t^8.01)/y + t^8.02/y - t^8.03/y + t^8.98/y + (3*t^8.99)/y - t^4.*y - t^5.*y - 2*t^6.01*y - 2*t^6.99*y - 2*t^7.*y - 2*t^7.01*y + t^7.99*y + t^8.*y + 2*t^8.01*y + t^8.02*y - t^8.03*y + t^8.98*y + 3*t^8.99*y t^2.01/g2^11 + t^2.01/g2^5 + g2^6*t^2.99 + g2^12*t^2.99 + t^3. + t^3./g2^3 + t^3.01/g2^6 + t^4./g2 + g2^2*t^4. + t^4.01/g2^10 + t^4.01/g2^7 + t^4.02/g2^16 + t^4.03/g2^22 + g2^7*t^4.99 + g2^10*t^4.99 + t^5./g2^2 + 2*g2*t^5. + g2^4*t^5. + (2*t^5.01)/g2^11 + (2*t^5.01)/g2^8 + (2*t^5.01)/g2^5 + t^5.02/g2^17 + t^5.02/g2^14 + (g1^3*t^5.49)/g2^13 + (g2^29*t^5.49)/g1^3 + (g1^3*t^5.5)/g2^25 + (g2^23*t^5.5)/g1^3 + g2^24*t^5.97 + g2^18*t^5.98 + g2^6*t^5.99 + g2^9*t^5.99 + g2^12*t^5.99 - 2*t^6. + (2*t^6.)/g2^3 + g2^3*t^6. + (2*t^6.01)/g2^12 + (2*t^6.01)/g2^9 + (2*t^6.01)/g2^6 + t^6.02/g2^18 + t^6.02/g2^15 + t^6.03/g2^27 + t^6.03/g2^21 + t^6.04/g2^33 + (g1^3*t^6.49)/g2^14 + (g2^28*t^6.49)/g1^3 + (g1^3*t^6.5)/g2^26 + (g2^22*t^6.5)/g1^3 + g2^14*t^6.98 + 2*g2^5*t^6.99 + g2^8*t^6.99 + (4*t^7.)/g2^4 + (2*t^7.)/g2 + 2*g2^2*t^7. + (4*t^7.01)/g2^10 + (3*t^7.01)/g2^7 + (2*t^7.02)/g2^19 + (3*t^7.02)/g2^16 + (3*t^7.02)/g2^13 + t^7.03/g2^28 + t^7.03/g2^25 + (2*t^7.03)/g2^22 + (g1^3*t^7.48)/g2^3 + (g1^3*t^7.49)/g2^15 + (g2^27*t^7.49)/g1^3 - (g2^30*t^7.49)/g1^3 + (g2^33*t^7.49)/g1^3 + (g2^21*t^7.5)/g1^3 + (g2^24*t^7.5)/g1^3 + (g1^3*t^7.51)/g2^30 + (g1^3*t^7.51)/g2^27 + (g2^12*t^7.51)/g1^3 + (g2^15*t^7.51)/g1^3 + (g2^18*t^7.51)/g1^3 + (g1^3*t^7.52)/g2^39 + (g1^3*t^7.52)/g2^36 + g2^22*t^7.97 + g2^13*t^7.98 + 2*g2^16*t^7.98 + g2^19*t^7.98 + 2*g2^7*t^7.99 + 2*g2^10*t^7.99 + (4*t^8.)/g2^2 + 3*g2*t^8. + 4*g2^4*t^8. + t^8.01/g2^11 + (5*t^8.01)/g2^8 + (3*t^8.02)/g2^20 + (3*t^8.02)/g2^17 + (4*t^8.02)/g2^14 + t^8.03/g2^26 + (2*t^8.03)/g2^23 + t^8.04/g2^32 + t^8.04/g2^29 + t^8.05/g2^44 + t^8.05/g2^38 + (g1^3*t^8.47)/g2 + (g2^35*t^8.48)/g1^3 + (g2^41*t^8.48)/g1^3 + (g1^3*t^8.49)/g2^16 + (g1^3*t^8.49)/g2^13 + (g1^3*t^8.5)/g2^19 + (g2^20*t^8.5)/g1^3 + (g2^23*t^8.5)/g1^3 + (g2^26*t^8.5)/g1^3 + (g1^3*t^8.51)/g2^31 + (g1^3*t^8.51)/g2^28 + (g2^17*t^8.51)/g1^3 + g2^30*t^8.96 + g2^36*t^8.96 + g2^21*t^8.97 + g2^24*t^8.97 + g2^15*t^8.98 + g2^18*t^8.98 - 2*g2^6*t^8.99 + 3*g2^9*t^8.99 - 3*g2^12*t^8.99 - t^4./(g2*y) - t^5./(g2^2*y) - t^6.01/(g2^12*y) - t^6.01/(g2^6*y) - (g2^5*t^6.99)/y - (g2^11*t^6.99)/y - t^7./(g2^4*y) - t^7./(g2*y) - (2*t^7.01)/(g2^7*y) + t^7.02/(g2^16*y) - t^7.02/(g2^13*y) + (g2^7*t^7.99)/y - t^8./(g2^2*y) + (2*g2*t^8.)/y + t^8.01/(g2^11*y) + t^8.01/(g2^5*y) + t^8.02/(g2^14*y) - t^8.03/(g2^23*y) + (g2^18*t^8.98)/y + (g2^6*t^8.99)/y + (g2^9*t^8.99)/y + (g2^12*t^8.99)/y - (t^4.*y)/g2 - (t^5.*y)/g2^2 - (t^6.01*y)/g2^12 - (t^6.01*y)/g2^6 - g2^5*t^6.99*y - g2^11*t^6.99*y - (t^7.*y)/g2^4 - (t^7.*y)/g2 - (2*t^7.01*y)/g2^7 + (t^7.02*y)/g2^16 - (t^7.02*y)/g2^13 + g2^7*t^7.99*y - (t^8.*y)/g2^2 + 2*g2*t^8.*y + (t^8.01*y)/g2^11 + (t^8.01*y)/g2^5 + (t^8.02*y)/g2^14 - (t^8.03*y)/g2^23 + g2^18*t^8.98*y + g2^6*t^8.99*y + g2^9*t^8.99*y + g2^12*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61046 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4796 1.7084 0.8661 [X:[1.3299], M:[0.6752, 0.6855], q:[0.4382, 0.4484], qb:[0.5618, 0.5413], phi:[0.335]] t^2.03 + t^2.06 + t^2.94 + t^2.97 + t^3. + t^3.02 + t^3.03 + t^3.99 + t^4.01 + t^4.04 + t^4.05 + t^4.08 + t^4.11 + t^4.95 + t^4.96 + 2*t^4.98 + 2*t^4.99 + 2*t^5.01 + 2*t^5.03 + 2*t^5.04 + 2*t^5.06 + t^5.07 + t^5.09 + t^5.88 + t^5.91 + 2*t^5.94 + t^5.95 + t^5.97 + 2*t^5.98 - t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57274 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 1.474 1.6826 0.876 [X:[1.3323], M:[0.6693], q:[0.4977, 0.5008], qb:[0.5023, 0.4961], phi:[0.3339]] t^2.008 + t^2.981 + t^2.991 + t^3. + t^3.005 + t^3.009 + t^3.983 + t^3.997 + t^4.002 + t^4.011 + t^4.016 + t^4.984 + t^4.989 + t^4.994 + t^4.998 + t^5.003 + t^5.008 + 2*t^5.012 + t^5.017 + t^5.485 + t^5.49 + t^5.499 + t^5.504 + t^5.963 + t^5.972 + t^5.981 + t^5.986 + 2*t^5.991 + t^5.995 - 2*t^6. - t^4.002/y - t^5.003/y - t^4.002*y - t^5.003*y detail