Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57032 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_6$ + $ M_7\phi_1q_2^2$ + $ M_8\phi_1q_1^2$ 0.7061 0.9132 0.7733 [X:[], M:[1.1516, 0.7275, 0.8484, 0.8081, 0.6872, 0.8484, 0.7275, 0.8081], q:[0.404, 0.4443], qb:[0.8685, 0.7476], phi:[0.3839]] [X:[], M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [-7, -7], [3, 3], [-11, -13], [7, 9]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_7$, $ M_2$, $ \phi_1^2$, $ M_4$, $ M_8$, $ M_3$, $ M_6$, $ \phi_1q_1q_2$, $ M_5^2$, $ M_5M_7$, $ M_2M_5$, $ M_7^2$, $ M_2M_7$, $ M_5\phi_1^2$, $ M_2^2$, $ M_4M_5$, $ M_7\phi_1^2$, $ M_5M_8$, $ M_2\phi_1^2$, $ M_4M_7$, $ M_2M_4$, $ M_3M_5$, $ M_5M_6$, $ M_7M_8$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_8$, $ M_3M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_2M_3$, $ M_2M_6$, $ M_8\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_8$, $ M_3\phi_1^2$, $ M_6\phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ M_3M_4$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_8$, $ M_6M_8$, $ M_3^2$, $ M_3M_6$, $ M_6^2$, $ \phi_1q_2\tilde{q}_1$ $\phi_1^3q_1q_2$ -2 t^2.06 + 2*t^2.18 + t^2.3 + 2*t^2.42 + 2*t^2.55 + t^3.7 + t^4.12 + 2*t^4.24 + 4*t^4.36 + 4*t^4.49 + 7*t^4.61 + 6*t^4.73 + 6*t^4.85 + 4*t^4.97 + 3*t^5.09 - 2*t^6. + t^6.18 + t^6.24 + 2*t^6.31 + 4*t^6.43 + 8*t^6.55 + 10*t^6.67 + 14*t^6.79 + 16*t^6.91 + 16*t^7.03 + 14*t^7.15 + 12*t^7.27 + 8*t^7.39 + 4*t^7.51 + 3*t^7.64 - 2*t^7.94 - 4*t^8.06 - 8*t^8.18 + t^8.25 - 7*t^8.3 + 2*t^8.37 - 10*t^8.42 + 4*t^8.49 - 7*t^8.55 + 8*t^8.61 - 4*t^8.67 + 15*t^8.73 + 18*t^8.85 + 27*t^8.97 - t^4.15/y - t^6.21/y - (2*t^6.33)/y - t^6.45/y - (2*t^6.58)/y - t^6.7/y + (2*t^7.24)/y + (2*t^7.36)/y + (4*t^7.49)/y + (7*t^7.61)/y + (8*t^7.73)/y + (4*t^7.85)/y + (6*t^7.97)/y + (2*t^8.09)/y - t^8.27/y - (2*t^8.4)/y - (4*t^8.52)/y - (4*t^8.64)/y - (5*t^8.76)/y - (2*t^8.88)/y - t^4.15*y - t^6.21*y - 2*t^6.33*y - t^6.45*y - 2*t^6.58*y - t^6.7*y + 2*t^7.24*y + 2*t^7.36*y + 4*t^7.49*y + 7*t^7.61*y + 8*t^7.73*y + 4*t^7.85*y + 6*t^7.97*y + 2*t^8.09*y - t^8.27*y - 2*t^8.4*y - 4*t^8.52*y - 4*t^8.64*y - 5*t^8.76*y - 2*t^8.88*y t^2.06/(g1^7*g2^7) + t^2.18/(g1^11*g2^13) + g1^2*g2^4*t^2.18 + t^2.3/(g1^2*g2^2) + t^2.42/(g1^6*g2^8) + g1^7*g2^9*t^2.42 + 2*g1^3*g2^3*t^2.55 + g1^2*g2^2*t^3.7 + t^4.12/(g1^14*g2^14) + t^4.24/(g1^18*g2^20) + t^4.24/(g1^5*g2^3) + t^4.36/(g1^22*g2^26) + (2*t^4.36)/(g1^9*g2^9) + g1^4*g2^8*t^4.36 + (2*t^4.49)/(g1^13*g2^15) + 2*g2^2*t^4.49 + t^4.61/(g1^17*g2^21) + (5*t^4.61)/(g1^4*g2^4) + g1^9*g2^13*t^4.61 + (3*t^4.73)/(g1^8*g2^10) + 3*g1^5*g2^7*t^4.73 + t^4.85/(g1^12*g2^16) + 4*g1*g2*t^4.85 + g1^14*g2^18*t^4.85 + (2*t^4.97)/(g1^3*g2^5) + 2*g1^10*g2^12*t^4.97 + 3*g1^6*g2^6*t^5.09 - 2*t^6. + t^6.18/(g1^21*g2^21) + g1^5*g2^5*t^6.24 + t^6.31/(g1^25*g2^27) + t^6.31/(g1^12*g2^10) + t^6.43/(g1^29*g2^33) + (2*t^6.43)/(g1^16*g2^16) + (g2*t^6.43)/g1^3 + t^6.55/(g1^33*g2^39) + (3*t^6.55)/(g1^20*g2^22) + (3*t^6.55)/(g1^7*g2^5) + g1^6*g2^12*t^6.55 + (2*t^6.67)/(g1^24*g2^28) + (6*t^6.67)/(g1^11*g2^11) + 2*g1^2*g2^6*t^6.67 + (6*t^6.79)/g1^2 + t^6.79/(g1^28*g2^34) + (6*t^6.79)/(g1^15*g2^17) + g1^11*g2^17*t^6.79 + (4*t^6.91)/(g1^19*g2^23) + (8*t^6.91)/(g1^6*g2^6) + 4*g1^7*g2^11*t^6.91 + t^7.03/(g1^23*g2^29) + (7*t^7.03)/(g1^10*g2^12) + 7*g1^3*g2^5*t^7.03 + g1^16*g2^22*t^7.03 + (3*t^7.15)/(g1^14*g2^18) + (8*t^7.15)/(g1*g2) + 3*g1^12*g2^16*t^7.15 + t^7.27/(g1^18*g2^24) + (5*t^7.27)/(g1^5*g2^7) + 5*g1^8*g2^10*t^7.27 + g1^21*g2^27*t^7.27 + (2*t^7.39)/(g1^9*g2^13) + 4*g1^4*g2^4*t^7.39 + 2*g1^17*g2^21*t^7.39 + (2*t^7.51)/g2^2 + 2*g1^13*g2^15*t^7.51 + 3*g1^9*g2^9*t^7.64 - t^7.94/(g1^16*g2^18) - t^7.94/(g1^3*g2) - (4*t^8.06)/(g1^7*g2^7) - (4*t^8.18)/(g1^11*g2^13) - 4*g1^2*g2^4*t^8.18 + t^8.25/(g1^28*g2^28) - t^8.3/(g1^15*g2^19) - (5*t^8.3)/(g1^2*g2^2) - g1^11*g2^15*t^8.3 + t^8.37/(g1^32*g2^34) + t^8.37/(g1^19*g2^17) - (5*t^8.42)/(g1^6*g2^8) - 5*g1^7*g2^9*t^8.42 + t^8.49/(g1^36*g2^40) + (2*t^8.49)/(g1^23*g2^23) + t^8.49/(g1^10*g2^6) - 7*g1^3*g2^3*t^8.55 + t^8.61/(g1^40*g2^46) + (3*t^8.61)/(g1^27*g2^29) + (3*t^8.61)/(g1^14*g2^12) + (g2^5*t^8.61)/g1 - (2*t^8.67)/(g1*g2^3) - 2*g1^12*g2^14*t^8.67 + t^8.73/(g1^44*g2^52) + (3*t^8.73)/(g1^31*g2^35) + (7*t^8.73)/(g1^18*g2^18) + (3*t^8.73)/(g1^5*g2) + g1^8*g2^16*t^8.73 + (2*t^8.85)/(g1^35*g2^41) + (7*t^8.85)/(g1^22*g2^24) + (7*t^8.85)/(g1^9*g2^7) + 2*g1^4*g2^10*t^8.85 + t^8.97/(g1^39*g2^47) + (7*t^8.97)/(g1^26*g2^30) + (11*t^8.97)/(g1^13*g2^13) + 7*g2^4*t^8.97 + g1^13*g2^21*t^8.97 - t^4.15/(g1*g2*y) - t^6.21/(g1^8*g2^8*y) - t^6.33/(g1^12*g2^14*y) - (g1*g2^3*t^6.33)/y - t^6.45/(g1^3*g2^3*y) - t^6.58/(g1^7*g2^9*y) - (g1^6*g2^8*t^6.58)/y - (g1^2*g2^2*t^6.7)/y + t^7.24/(g1^18*g2^20*y) + t^7.24/(g1^5*g2^3*y) + (2*t^7.36)/(g1^9*g2^9*y) + (2*t^7.49)/(g1^13*g2^15*y) + (2*g2^2*t^7.49)/y + t^7.61/(g1^17*g2^21*y) + (5*t^7.61)/(g1^4*g2^4*y) + (g1^9*g2^13*t^7.61)/y + (4*t^7.73)/(g1^8*g2^10*y) + (4*g1^5*g2^7*t^7.73)/y + (4*g1*g2*t^7.85)/y + (3*t^7.97)/(g1^3*g2^5*y) + (3*g1^10*g2^12*t^7.97)/y + (2*g1^6*g2^6*t^8.09)/y - t^8.27/(g1^15*g2^15*y) - t^8.4/(g1^19*g2^21*y) - t^8.4/(g1^6*g2^4*y) - t^8.52/(g1^23*g2^27*y) - (2*t^8.52)/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.52)/y - (2*t^8.64)/(g1^14*g2^16*y) - (2*g2*t^8.64)/(g1*y) - t^8.76/(g1^18*g2^22*y) - (3*t^8.76)/(g1^5*g2^5*y) - (g1^8*g2^12*t^8.76)/y - t^8.88/(g1^9*g2^11*y) - (g1^4*g2^6*t^8.88)/y - (t^4.15*y)/(g1*g2) - (t^6.21*y)/(g1^8*g2^8) - (t^6.33*y)/(g1^12*g2^14) - g1*g2^3*t^6.33*y - (t^6.45*y)/(g1^3*g2^3) - (t^6.58*y)/(g1^7*g2^9) - g1^6*g2^8*t^6.58*y - g1^2*g2^2*t^6.7*y + (t^7.24*y)/(g1^18*g2^20) + (t^7.24*y)/(g1^5*g2^3) + (2*t^7.36*y)/(g1^9*g2^9) + (2*t^7.49*y)/(g1^13*g2^15) + 2*g2^2*t^7.49*y + (t^7.61*y)/(g1^17*g2^21) + (5*t^7.61*y)/(g1^4*g2^4) + g1^9*g2^13*t^7.61*y + (4*t^7.73*y)/(g1^8*g2^10) + 4*g1^5*g2^7*t^7.73*y + 4*g1*g2*t^7.85*y + (3*t^7.97*y)/(g1^3*g2^5) + 3*g1^10*g2^12*t^7.97*y + 2*g1^6*g2^6*t^8.09*y - (t^8.27*y)/(g1^15*g2^15) - (t^8.4*y)/(g1^19*g2^21) - (t^8.4*y)/(g1^6*g2^4) - (t^8.52*y)/(g1^23*g2^27) - (2*t^8.52*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.52*y - (2*t^8.64*y)/(g1^14*g2^16) - (2*g2*t^8.64*y)/g1 - (t^8.76*y)/(g1^18*g2^22) - (3*t^8.76*y)/(g1^5*g2^5) - g1^8*g2^12*t^8.76*y - (t^8.88*y)/(g1^9*g2^11) - g1^4*g2^6*t^8.88*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55473 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_6$ + $ M_7\phi_1q_2^2$ 0.6909 0.8877 0.7783 [X:[], M:[1.1505, 0.7502, 0.8495, 0.7838, 0.6844, 0.8495, 0.7012], q:[0.3919, 0.4576], qb:[0.8579, 0.7586], phi:[0.3835]] t^2.05 + t^2.1 + t^2.25 + t^2.3 + t^2.35 + 2*t^2.55 + t^3.5 + t^3.7 + t^4.11 + t^4.16 + t^4.21 + t^4.3 + 2*t^4.35 + 2*t^4.4 + t^4.46 + t^4.5 + t^4.55 + 4*t^4.6 + 3*t^4.65 + t^4.7 + 2*t^4.8 + 3*t^4.85 + 2*t^4.9 + 3*t^5.1 + t^5.56 + t^5.61 + t^5.75 + t^5.8 + t^5.85 - 2*t^6. - t^4.15/y - t^4.15*y detail