Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57032 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ | 0.7061 | 0.9132 | 0.7733 | [M:[1.1516, 0.7275, 0.8484, 0.8081, 0.6872, 0.8484, 0.7275, 0.8081], q:[0.404, 0.4443], qb:[0.8685, 0.7476], phi:[0.3839]] | [M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [-7, -7], [3, 3], [-11, -13], [7, 9]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{7}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{8}$, ${ }M_{3}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{8}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{8}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$ | ${}\phi_{1}^{3}q_{1}q_{2}$ | -2 | t^2.061 + 2*t^2.182 + t^2.303 + 2*t^2.424 + 2*t^2.545 + t^3.697 + t^4.123 + 2*t^4.244 + 4*t^4.365 + 4*t^4.486 + 7*t^4.607 + 6*t^4.727 + 6*t^4.848 + 4*t^4.969 + 3*t^5.09 - 2*t^6. + t^6.184 + t^6.242 + 2*t^6.305 + 4*t^6.426 + 8*t^6.547 + 10*t^6.668 + 14*t^6.789 + 16*t^6.91 + 16*t^7.031 + 14*t^7.152 + 12*t^7.273 + 8*t^7.393 + 4*t^7.514 + 3*t^7.635 - 2*t^7.941 - 4*t^8.061 - 8*t^8.182 + t^8.246 - 7*t^8.303 + 2*t^8.367 - 10*t^8.424 + 4*t^8.488 - 7*t^8.545 + 8*t^8.609 - 4*t^8.666 + 15*t^8.73 + 18*t^8.85 + 27*t^8.971 - t^4.152/y - t^6.213/y - (2*t^6.334)/y - t^6.455/y - (2*t^6.576)/y - t^6.697/y + (2*t^7.244)/y + (2*t^7.365)/y + (4*t^7.486)/y + (7*t^7.607)/y + (8*t^7.727)/y + (4*t^7.848)/y + (6*t^7.969)/y + (2*t^8.09)/y - t^8.275/y - (2*t^8.396)/y - (4*t^8.516)/y - (4*t^8.637)/y - (5*t^8.758)/y - (2*t^8.879)/y - t^4.152*y - t^6.213*y - 2*t^6.334*y - t^6.455*y - 2*t^6.576*y - t^6.697*y + 2*t^7.244*y + 2*t^7.365*y + 4*t^7.486*y + 7*t^7.607*y + 8*t^7.727*y + 4*t^7.848*y + 6*t^7.969*y + 2*t^8.09*y - t^8.275*y - 2*t^8.396*y - 4*t^8.516*y - 4*t^8.637*y - 5*t^8.758*y - 2*t^8.879*y | t^2.061/(g1^7*g2^7) + t^2.182/(g1^11*g2^13) + g1^2*g2^4*t^2.182 + t^2.303/(g1^2*g2^2) + t^2.424/(g1^6*g2^8) + g1^7*g2^9*t^2.424 + 2*g1^3*g2^3*t^2.545 + g1^2*g2^2*t^3.697 + t^4.123/(g1^14*g2^14) + t^4.244/(g1^18*g2^20) + t^4.244/(g1^5*g2^3) + t^4.365/(g1^22*g2^26) + (2*t^4.365)/(g1^9*g2^9) + g1^4*g2^8*t^4.365 + (2*t^4.486)/(g1^13*g2^15) + 2*g2^2*t^4.486 + t^4.607/(g1^17*g2^21) + (5*t^4.607)/(g1^4*g2^4) + g1^9*g2^13*t^4.607 + (3*t^4.727)/(g1^8*g2^10) + 3*g1^5*g2^7*t^4.727 + t^4.848/(g1^12*g2^16) + 4*g1*g2*t^4.848 + g1^14*g2^18*t^4.848 + (2*t^4.969)/(g1^3*g2^5) + 2*g1^10*g2^12*t^4.969 + 3*g1^6*g2^6*t^5.09 - 2*t^6. + t^6.184/(g1^21*g2^21) + g1^5*g2^5*t^6.242 + t^6.305/(g1^25*g2^27) + t^6.305/(g1^12*g2^10) + t^6.426/(g1^29*g2^33) + (2*t^6.426)/(g1^16*g2^16) + (g2*t^6.426)/g1^3 + t^6.547/(g1^33*g2^39) + (3*t^6.547)/(g1^20*g2^22) + (3*t^6.547)/(g1^7*g2^5) + g1^6*g2^12*t^6.547 + (2*t^6.668)/(g1^24*g2^28) + (6*t^6.668)/(g1^11*g2^11) + 2*g1^2*g2^6*t^6.668 + (6*t^6.789)/g1^2 + t^6.789/(g1^28*g2^34) + (6*t^6.789)/(g1^15*g2^17) + g1^11*g2^17*t^6.789 + (4*t^6.91)/(g1^19*g2^23) + (8*t^6.91)/(g1^6*g2^6) + 4*g1^7*g2^11*t^6.91 + t^7.031/(g1^23*g2^29) + (7*t^7.031)/(g1^10*g2^12) + 7*g1^3*g2^5*t^7.031 + g1^16*g2^22*t^7.031 + (3*t^7.152)/(g1^14*g2^18) + (8*t^7.152)/(g1*g2) + 3*g1^12*g2^16*t^7.152 + t^7.273/(g1^18*g2^24) + (5*t^7.273)/(g1^5*g2^7) + 5*g1^8*g2^10*t^7.273 + g1^21*g2^27*t^7.273 + (2*t^7.393)/(g1^9*g2^13) + 4*g1^4*g2^4*t^7.393 + 2*g1^17*g2^21*t^7.393 + (2*t^7.514)/g2^2 + 2*g1^13*g2^15*t^7.514 + 3*g1^9*g2^9*t^7.635 - t^7.941/(g1^16*g2^18) - t^7.941/(g1^3*g2) - (4*t^8.061)/(g1^7*g2^7) - (4*t^8.182)/(g1^11*g2^13) - 4*g1^2*g2^4*t^8.182 + t^8.246/(g1^28*g2^28) - t^8.303/(g1^15*g2^19) - (5*t^8.303)/(g1^2*g2^2) - g1^11*g2^15*t^8.303 + t^8.367/(g1^32*g2^34) + t^8.367/(g1^19*g2^17) - (5*t^8.424)/(g1^6*g2^8) - 5*g1^7*g2^9*t^8.424 + t^8.488/(g1^36*g2^40) + (2*t^8.488)/(g1^23*g2^23) + t^8.488/(g1^10*g2^6) - 7*g1^3*g2^3*t^8.545 + t^8.609/(g1^40*g2^46) + (3*t^8.609)/(g1^27*g2^29) + (3*t^8.609)/(g1^14*g2^12) + (g2^5*t^8.609)/g1 - (2*t^8.666)/(g1*g2^3) - 2*g1^12*g2^14*t^8.666 + t^8.73/(g1^44*g2^52) + (3*t^8.73)/(g1^31*g2^35) + (7*t^8.73)/(g1^18*g2^18) + (3*t^8.73)/(g1^5*g2) + g1^8*g2^16*t^8.73 + (2*t^8.85)/(g1^35*g2^41) + (7*t^8.85)/(g1^22*g2^24) + (7*t^8.85)/(g1^9*g2^7) + 2*g1^4*g2^10*t^8.85 + t^8.971/(g1^39*g2^47) + (7*t^8.971)/(g1^26*g2^30) + (11*t^8.971)/(g1^13*g2^13) + 7*g2^4*t^8.971 + g1^13*g2^21*t^8.971 - t^4.152/(g1*g2*y) - t^6.213/(g1^8*g2^8*y) - t^6.334/(g1^12*g2^14*y) - (g1*g2^3*t^6.334)/y - t^6.455/(g1^3*g2^3*y) - t^6.576/(g1^7*g2^9*y) - (g1^6*g2^8*t^6.576)/y - (g1^2*g2^2*t^6.697)/y + t^7.244/(g1^18*g2^20*y) + t^7.244/(g1^5*g2^3*y) + (2*t^7.365)/(g1^9*g2^9*y) + (2*t^7.486)/(g1^13*g2^15*y) + (2*g2^2*t^7.486)/y + t^7.607/(g1^17*g2^21*y) + (5*t^7.607)/(g1^4*g2^4*y) + (g1^9*g2^13*t^7.607)/y + (4*t^7.727)/(g1^8*g2^10*y) + (4*g1^5*g2^7*t^7.727)/y + (4*g1*g2*t^7.848)/y + (3*t^7.969)/(g1^3*g2^5*y) + (3*g1^10*g2^12*t^7.969)/y + (2*g1^6*g2^6*t^8.09)/y - t^8.275/(g1^15*g2^15*y) - t^8.396/(g1^19*g2^21*y) - t^8.396/(g1^6*g2^4*y) - t^8.516/(g1^23*g2^27*y) - (2*t^8.516)/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.516)/y - (2*t^8.637)/(g1^14*g2^16*y) - (2*g2*t^8.637)/(g1*y) - t^8.758/(g1^18*g2^22*y) - (3*t^8.758)/(g1^5*g2^5*y) - (g1^8*g2^12*t^8.758)/y - t^8.879/(g1^9*g2^11*y) - (g1^4*g2^6*t^8.879)/y - (t^4.152*y)/(g1*g2) - (t^6.213*y)/(g1^8*g2^8) - (t^6.334*y)/(g1^12*g2^14) - g1*g2^3*t^6.334*y - (t^6.455*y)/(g1^3*g2^3) - (t^6.576*y)/(g1^7*g2^9) - g1^6*g2^8*t^6.576*y - g1^2*g2^2*t^6.697*y + (t^7.244*y)/(g1^18*g2^20) + (t^7.244*y)/(g1^5*g2^3) + (2*t^7.365*y)/(g1^9*g2^9) + (2*t^7.486*y)/(g1^13*g2^15) + 2*g2^2*t^7.486*y + (t^7.607*y)/(g1^17*g2^21) + (5*t^7.607*y)/(g1^4*g2^4) + g1^9*g2^13*t^7.607*y + (4*t^7.727*y)/(g1^8*g2^10) + 4*g1^5*g2^7*t^7.727*y + 4*g1*g2*t^7.848*y + (3*t^7.969*y)/(g1^3*g2^5) + 3*g1^10*g2^12*t^7.969*y + 2*g1^6*g2^6*t^8.09*y - (t^8.275*y)/(g1^15*g2^15) - (t^8.396*y)/(g1^19*g2^21) - (t^8.396*y)/(g1^6*g2^4) - (t^8.516*y)/(g1^23*g2^27) - (2*t^8.516*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.516*y - (2*t^8.637*y)/(g1^14*g2^16) - (2*g2*t^8.637*y)/g1 - (t^8.758*y)/(g1^18*g2^22) - (3*t^8.758*y)/(g1^5*g2^5) - g1^8*g2^12*t^8.758*y - (t^8.879*y)/(g1^9*g2^11) - g1^4*g2^6*t^8.879*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58702 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ + ${ }M_{9}\phi_{1}^{2}$ | 0.6879 | 0.8801 | 0.7817 | [M:[1.1553, 0.7329, 0.8447, 0.8075, 0.6957, 0.8447, 0.7329, 0.8075, 1.2298], q:[0.4037, 0.441], qb:[0.8633, 0.7516], phi:[0.3851]] | t^2.087 + 2*t^2.199 + 2*t^2.422 + 2*t^2.534 + 2*t^3.689 + t^4.174 + 2*t^4.286 + 3*t^4.398 + 2*t^4.509 + 6*t^4.621 + 4*t^4.733 + 4*t^4.845 + 4*t^4.957 + 3*t^5.068 + t^5.776 + 2*t^5.888 - 3*t^6. - t^4.155/y - t^4.155*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55473 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.6909 | 0.8877 | 0.7783 | [M:[1.1505, 0.7502, 0.8495, 0.7838, 0.6844, 0.8495, 0.7012], q:[0.3919, 0.4576], qb:[0.8579, 0.7586], phi:[0.3835]] | t^2.053 + t^2.104 + t^2.25 + t^2.301 + t^2.351 + 2*t^2.549 + t^3.502 + t^3.699 + t^4.106 + t^4.157 + t^4.207 + t^4.304 + 2*t^4.354 + 2*t^4.405 + t^4.455 + t^4.501 + t^4.551 + 4*t^4.602 + 3*t^4.652 + t^4.703 + 2*t^4.799 + 3*t^4.85 + 2*t^4.9 + 3*t^5.097 + t^5.555 + t^5.606 + t^5.752 + t^5.803 + t^5.853 - 2*t^6. - t^4.15/y - t^4.15*y | detail |