Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5467 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ | 0.7061 | 0.9132 | 0.7733 | [X:[], M:[0.7275, 0.8081, 0.6872, 0.8484, 1.1516, 0.8484, 0.7275, 0.8081], q:[0.8685, 0.404], qb:[0.4443, 0.7476], phi:[0.3839]] | [X:[], M:[[18], [-2], [28], [-12], [12], [-12], [18], [-2]], q:[[-17], [-1]], qb:[[-11], [13]], phi:[[4]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_7$, $ \phi_1^2$, $ M_2$, $ M_8$, $ M_4$, $ M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_3M_7$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_3M_8$, $ M_1\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_2M_7$, $ M_1M_8$, $ M_7M_8$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_1M_6$, $ M_4M_7$, $ M_6M_7$, $ M_2\phi_1^2$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_8$, $ M_8^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ M_4M_8$, $ M_6M_8$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$ | $\phi_1^3q_2\tilde{q}_1$ | -2 | t^2.06 + 2*t^2.18 + t^2.3 + 2*t^2.42 + 2*t^2.55 + t^3.7 + t^4.12 + 2*t^4.24 + 4*t^4.36 + 4*t^4.49 + 7*t^4.61 + 6*t^4.73 + 6*t^4.85 + 4*t^4.97 + 3*t^5.09 - 2*t^6. + t^6.18 + t^6.24 + 2*t^6.31 + 4*t^6.43 + 8*t^6.55 + 10*t^6.67 + 14*t^6.79 + 16*t^6.91 + 16*t^7.03 + 14*t^7.15 + 12*t^7.27 + 8*t^7.39 + 4*t^7.51 + 3*t^7.64 - 2*t^7.94 - 4*t^8.06 - 8*t^8.18 + t^8.25 - 7*t^8.3 + 2*t^8.37 - 10*t^8.42 + 4*t^8.49 - 7*t^8.55 + 8*t^8.61 - 4*t^8.67 + 15*t^8.73 + 18*t^8.85 + 27*t^8.97 - t^4.15/y - t^6.21/y - (2*t^6.33)/y - t^6.45/y - (2*t^6.58)/y - t^6.7/y + (2*t^7.24)/y + (2*t^7.36)/y + (4*t^7.49)/y + (7*t^7.61)/y + (8*t^7.73)/y + (4*t^7.85)/y + (6*t^7.97)/y + (2*t^8.09)/y - t^8.27/y - (2*t^8.4)/y - (4*t^8.52)/y - (4*t^8.64)/y - (5*t^8.76)/y - (2*t^8.88)/y - t^4.15*y - t^6.21*y - 2*t^6.33*y - t^6.45*y - 2*t^6.58*y - t^6.7*y + 2*t^7.24*y + 2*t^7.36*y + 4*t^7.49*y + 7*t^7.61*y + 8*t^7.73*y + 4*t^7.85*y + 6*t^7.97*y + 2*t^8.09*y - t^8.27*y - 2*t^8.4*y - 4*t^8.52*y - 4*t^8.64*y - 5*t^8.76*y - 2*t^8.88*y | g1^28*t^2.06 + 2*g1^18*t^2.18 + g1^8*t^2.3 + (2*t^2.42)/g1^2 + (2*t^2.55)/g1^12 + t^3.7/g1^8 + g1^56*t^4.12 + 2*g1^46*t^4.24 + 4*g1^36*t^4.36 + 4*g1^26*t^4.49 + 7*g1^16*t^4.61 + 6*g1^6*t^4.73 + (6*t^4.85)/g1^4 + (4*t^4.97)/g1^14 + (3*t^5.09)/g1^24 - 2*t^6. + g1^84*t^6.18 + t^6.24/g1^20 + 2*g1^74*t^6.31 + 4*g1^64*t^6.43 + 8*g1^54*t^6.55 + 10*g1^44*t^6.67 + 14*g1^34*t^6.79 + 16*g1^24*t^6.91 + 16*g1^14*t^7.03 + 14*g1^4*t^7.15 + (12*t^7.27)/g1^6 + (8*t^7.39)/g1^16 + (4*t^7.51)/g1^26 + (3*t^7.64)/g1^36 - 2*g1^38*t^7.94 - 4*g1^28*t^8.06 - 8*g1^18*t^8.18 + g1^112*t^8.25 - 7*g1^8*t^8.3 + 2*g1^102*t^8.37 - (10*t^8.42)/g1^2 + 4*g1^92*t^8.49 - (7*t^8.55)/g1^12 + 8*g1^82*t^8.61 - (4*t^8.67)/g1^22 + 15*g1^72*t^8.73 + 18*g1^62*t^8.85 + 27*g1^52*t^8.97 - (g1^4*t^4.15)/y - (g1^32*t^6.21)/y - (2*g1^22*t^6.33)/y - (g1^12*t^6.45)/y - (2*g1^2*t^6.58)/y - t^6.7/(g1^8*y) + (2*g1^46*t^7.24)/y + (2*g1^36*t^7.36)/y + (4*g1^26*t^7.49)/y + (7*g1^16*t^7.61)/y + (8*g1^6*t^7.73)/y + (4*t^7.85)/(g1^4*y) + (6*t^7.97)/(g1^14*y) + (2*t^8.09)/(g1^24*y) - (g1^60*t^8.27)/y - (2*g1^50*t^8.4)/y - (4*g1^40*t^8.52)/y - (4*g1^30*t^8.64)/y - (5*g1^20*t^8.76)/y - (2*g1^10*t^8.88)/y - g1^4*t^4.15*y - g1^32*t^6.21*y - 2*g1^22*t^6.33*y - g1^12*t^6.45*y - 2*g1^2*t^6.58*y - (t^6.7*y)/g1^8 + 2*g1^46*t^7.24*y + 2*g1^36*t^7.36*y + 4*g1^26*t^7.49*y + 7*g1^16*t^7.61*y + 8*g1^6*t^7.73*y + (4*t^7.85*y)/g1^4 + (6*t^7.97*y)/g1^14 + (2*t^8.09*y)/g1^24 - g1^60*t^8.27*y - 2*g1^50*t^8.4*y - 4*g1^40*t^8.52*y - 4*g1^30*t^8.64*y - 5*g1^20*t^8.76*y - 2*g1^10*t^8.88*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3880 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.6901 | 0.8854 | 0.7795 | [X:[], M:[0.7257, 0.8083, 0.6845, 0.8495, 1.1505, 0.8495, 0.7257], q:[0.8701, 0.4041], qb:[0.4454, 0.7464], phi:[0.3835]] | t^2.05 + 2*t^2.18 + t^2.3 + t^2.42 + 2*t^2.55 + t^3.58 + t^3.7 + t^4.11 + 2*t^4.23 + 4*t^4.35 + 3*t^4.48 + 5*t^4.6 + 5*t^4.73 + 4*t^4.85 + 2*t^4.97 + 3*t^5.1 + t^5.63 + 2*t^5.75 + t^5.88 - t^6. - t^4.15/y - t^4.15*y | detail |