Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3884 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ | 0.7061 | 0.9132 | 0.7733 | [X:[], M:[0.7275, 0.8081, 0.6872, 0.8484, 1.1516, 0.8484, 0.7275, 0.8081], q:[0.8685, 0.404], qb:[0.4443, 0.7476], phi:[0.3839]] | [X:[], M:[[2, 10], [-6, -6], [-7, 7], [3, -3], [-3, 3], [3, -3], [-11, -1], [7, 5]], q:[[1, -7], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_7$, $ M_1$, $ \phi_1^2$, $ M_2$, $ M_8$, $ M_4$, $ M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_3^2$, $ M_3M_7$, $ M_1M_3$, $ M_7^2$, $ M_1M_7$, $ M_3\phi_1^2$, $ M_1^2$, $ M_2M_3$, $ M_7\phi_1^2$, $ M_3M_8$, $ M_1\phi_1^2$, $ M_2M_7$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_7M_8$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_8$, $ M_4M_7$, $ M_6M_7$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_1M_6$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_8$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_8^2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_4M_8$, $ M_6M_8$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$ | $\phi_1^3q_2\tilde{q}_1$ | -2 | t^2.06 + 2*t^2.18 + t^2.3 + 2*t^2.42 + 2*t^2.55 + t^3.7 + t^4.12 + 2*t^4.24 + 4*t^4.36 + 4*t^4.49 + 7*t^4.61 + 6*t^4.73 + 6*t^4.85 + 4*t^4.97 + 3*t^5.09 - 2*t^6. + t^6.18 + t^6.24 + 2*t^6.31 + 4*t^6.43 + 8*t^6.55 + 10*t^6.67 + 14*t^6.79 + 16*t^6.91 + 16*t^7.03 + 14*t^7.15 + 12*t^7.27 + 8*t^7.39 + 4*t^7.51 + 3*t^7.64 - 2*t^7.94 - 4*t^8.06 - 8*t^8.18 + t^8.25 - 7*t^8.3 + 2*t^8.37 - 10*t^8.42 + 4*t^8.49 - 7*t^8.55 + 8*t^8.61 - 4*t^8.67 + 15*t^8.73 + 18*t^8.85 + 27*t^8.97 - t^4.15/y - t^6.21/y - (2*t^6.33)/y - t^6.45/y - (2*t^6.58)/y - t^6.7/y + (2*t^7.24)/y + (2*t^7.36)/y + (4*t^7.49)/y + (7*t^7.61)/y + (8*t^7.73)/y + (4*t^7.85)/y + (6*t^7.97)/y + (2*t^8.09)/y - t^8.27/y - (2*t^8.4)/y - (4*t^8.52)/y - (4*t^8.64)/y - (5*t^8.76)/y - (2*t^8.88)/y - t^4.15*y - t^6.21*y - 2*t^6.33*y - t^6.45*y - 2*t^6.58*y - t^6.7*y + 2*t^7.24*y + 2*t^7.36*y + 4*t^7.49*y + 7*t^7.61*y + 8*t^7.73*y + 4*t^7.85*y + 6*t^7.97*y + 2*t^8.09*y - t^8.27*y - 2*t^8.4*y - 4*t^8.52*y - 4*t^8.64*y - 5*t^8.76*y - 2*t^8.88*y | (g2^7*t^2.06)/g1^7 + t^2.18/(g1^11*g2) + g1^2*g2^10*t^2.18 + (g2^2*t^2.3)/g1^2 + t^2.42/(g1^6*g2^6) + g1^7*g2^5*t^2.42 + (2*g1^3*t^2.55)/g2^3 + (g1^2*t^3.7)/g2^2 + (g2^14*t^4.12)/g1^14 + (g2^6*t^4.24)/g1^18 + (g2^17*t^4.24)/g1^5 + t^4.36/(g1^22*g2^2) + (2*g2^9*t^4.36)/g1^9 + g1^4*g2^20*t^4.36 + (2*g2*t^4.49)/g1^13 + 2*g2^12*t^4.49 + t^4.61/(g1^17*g2^7) + (5*g2^4*t^4.61)/g1^4 + g1^9*g2^15*t^4.61 + (3*t^4.73)/(g1^8*g2^4) + 3*g1^5*g2^7*t^4.73 + t^4.85/(g1^12*g2^12) + (4*g1*t^4.85)/g2 + g1^14*g2^10*t^4.85 + (2*t^4.97)/(g1^3*g2^9) + 2*g1^10*g2^2*t^4.97 + (3*g1^6*t^5.09)/g2^6 - 2*t^6. + (g2^21*t^6.18)/g1^21 + (g1^5*t^6.24)/g2^5 + (g2^13*t^6.31)/g1^25 + (g2^24*t^6.31)/g1^12 + (g2^5*t^6.43)/g1^29 + (2*g2^16*t^6.43)/g1^16 + (g2^27*t^6.43)/g1^3 + t^6.55/(g1^33*g2^3) + (3*g2^8*t^6.55)/g1^20 + (3*g2^19*t^6.55)/g1^7 + g1^6*g2^30*t^6.55 + (2*t^6.67)/g1^24 + (6*g2^11*t^6.67)/g1^11 + 2*g1^2*g2^22*t^6.67 + t^6.79/(g1^28*g2^8) + (6*g2^3*t^6.79)/g1^15 + (6*g2^14*t^6.79)/g1^2 + g1^11*g2^25*t^6.79 + (4*t^6.91)/(g1^19*g2^5) + (8*g2^6*t^6.91)/g1^6 + 4*g1^7*g2^17*t^6.91 + t^7.03/(g1^23*g2^13) + (7*t^7.03)/(g1^10*g2^2) + 7*g1^3*g2^9*t^7.03 + g1^16*g2^20*t^7.03 + (3*t^7.15)/(g1^14*g2^10) + (8*g2*t^7.15)/g1 + 3*g1^12*g2^12*t^7.15 + t^7.27/(g1^18*g2^18) + (5*t^7.27)/(g1^5*g2^7) + 5*g1^8*g2^4*t^7.27 + g1^21*g2^15*t^7.27 + (2*t^7.39)/(g1^9*g2^15) + (4*g1^4*t^7.39)/g2^4 + 2*g1^17*g2^7*t^7.39 + (2*t^7.51)/g2^12 + (2*g1^13*t^7.51)/g2 + (3*g1^9*t^7.64)/g2^9 - (g2^4*t^7.94)/g1^16 - (g2^15*t^7.94)/g1^3 - (4*g2^7*t^8.06)/g1^7 - (4*t^8.18)/(g1^11*g2) - 4*g1^2*g2^10*t^8.18 + (g2^28*t^8.25)/g1^28 - t^8.3/(g1^15*g2^9) - (5*g2^2*t^8.3)/g1^2 - g1^11*g2^13*t^8.3 + (g2^20*t^8.37)/g1^32 + (g2^31*t^8.37)/g1^19 - (5*t^8.42)/(g1^6*g2^6) - 5*g1^7*g2^5*t^8.42 + (g2^12*t^8.49)/g1^36 + (2*g2^23*t^8.49)/g1^23 + (g2^34*t^8.49)/g1^10 - (7*g1^3*t^8.55)/g2^3 + (g2^4*t^8.61)/g1^40 + (3*g2^15*t^8.61)/g1^27 + (3*g2^26*t^8.61)/g1^14 + (g2^37*t^8.61)/g1 - 2*g1^12*t^8.67 - (2*t^8.67)/(g1*g2^11) + t^8.73/(g1^44*g2^4) + (3*g2^7*t^8.73)/g1^31 + (7*g2^18*t^8.73)/g1^18 + (3*g2^29*t^8.73)/g1^5 + g1^8*g2^40*t^8.73 + (2*t^8.85)/(g1^35*g2) + (7*g2^10*t^8.85)/g1^22 + (7*g2^21*t^8.85)/g1^9 + 2*g1^4*g2^32*t^8.85 + t^8.97/(g1^39*g2^9) + (7*g2^2*t^8.97)/g1^26 + (11*g2^13*t^8.97)/g1^13 + 7*g2^24*t^8.97 + g1^13*g2^35*t^8.97 - (g2*t^4.15)/(g1*y) - (g2^8*t^6.21)/(g1^8*y) - t^6.33/(g1^12*y) - (g1*g2^11*t^6.33)/y - (g2^3*t^6.45)/(g1^3*y) - t^6.58/(g1^7*g2^5*y) - (g1^6*g2^6*t^6.58)/y - (g1^2*t^6.7)/(g2^2*y) + (g2^6*t^7.24)/(g1^18*y) + (g2^17*t^7.24)/(g1^5*y) + (2*g2^9*t^7.36)/(g1^9*y) + (2*g2*t^7.49)/(g1^13*y) + (2*g2^12*t^7.49)/y + t^7.61/(g1^17*g2^7*y) + (5*g2^4*t^7.61)/(g1^4*y) + (g1^9*g2^15*t^7.61)/y + (4*t^7.73)/(g1^8*g2^4*y) + (4*g1^5*g2^7*t^7.73)/y + (4*g1*t^7.85)/(g2*y) + (3*t^7.97)/(g1^3*g2^9*y) + (3*g1^10*g2^2*t^7.97)/y + (2*g1^6*t^8.09)/(g2^6*y) - (g2^15*t^8.27)/(g1^15*y) - (g2^7*t^8.4)/(g1^19*y) - (g2^18*t^8.4)/(g1^6*y) - t^8.52/(g1^23*g2*y) - (2*g2^10*t^8.52)/(g1^10*y) - (g1^3*g2^21*t^8.52)/y - (2*g2^2*t^8.64)/(g1^14*y) - (2*g2^13*t^8.64)/(g1*y) - t^8.76/(g1^18*g2^6*y) - (3*g2^5*t^8.76)/(g1^5*y) - (g1^8*g2^16*t^8.76)/y - t^8.88/(g1^9*g2^3*y) - (g1^4*g2^8*t^8.88)/y - (g2*t^4.15*y)/g1 - (g2^8*t^6.21*y)/g1^8 - (t^6.33*y)/g1^12 - g1*g2^11*t^6.33*y - (g2^3*t^6.45*y)/g1^3 - (t^6.58*y)/(g1^7*g2^5) - g1^6*g2^6*t^6.58*y - (g1^2*t^6.7*y)/g2^2 + (g2^6*t^7.24*y)/g1^18 + (g2^17*t^7.24*y)/g1^5 + (2*g2^9*t^7.36*y)/g1^9 + (2*g2*t^7.49*y)/g1^13 + 2*g2^12*t^7.49*y + (t^7.61*y)/(g1^17*g2^7) + (5*g2^4*t^7.61*y)/g1^4 + g1^9*g2^15*t^7.61*y + (4*t^7.73*y)/(g1^8*g2^4) + 4*g1^5*g2^7*t^7.73*y + (4*g1*t^7.85*y)/g2 + (3*t^7.97*y)/(g1^3*g2^9) + 3*g1^10*g2^2*t^7.97*y + (2*g1^6*t^8.09*y)/g2^6 - (g2^15*t^8.27*y)/g1^15 - (g2^7*t^8.4*y)/g1^19 - (g2^18*t^8.4*y)/g1^6 - (t^8.52*y)/(g1^23*g2) - (2*g2^10*t^8.52*y)/g1^10 - g1^3*g2^21*t^8.52*y - (2*g2^2*t^8.64*y)/g1^14 - (2*g2^13*t^8.64*y)/g1 - (t^8.76*y)/(g1^18*g2^6) - (3*g2^5*t^8.76*y)/g1^5 - g1^8*g2^16*t^8.76*y - (t^8.88*y)/(g1^9*g2^3) - g1^4*g2^8*t^8.88*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3396 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.6909 | 0.8877 | 0.7783 | [X:[], M:[0.7502, 0.7838, 0.6844, 0.8495, 1.1505, 0.8495, 0.7012], q:[0.8579, 0.3919], qb:[0.4576, 0.7586], phi:[0.3835]] | t^2.05 + t^2.1 + t^2.25 + t^2.3 + t^2.35 + 2*t^2.55 + t^3.5 + t^3.7 + t^4.11 + t^4.16 + t^4.21 + t^4.3 + 2*t^4.35 + 2*t^4.4 + t^4.46 + t^4.5 + t^4.55 + 4*t^4.6 + 3*t^4.65 + t^4.7 + 2*t^4.8 + 3*t^4.85 + 2*t^4.9 + 3*t^5.1 + t^5.56 + t^5.61 + t^5.75 + t^5.8 + t^5.85 - 2*t^6. - t^4.15/y - t^4.15*y | detail |