Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3479 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ 0.6748 0.8586 0.7859 [X:[], M:[0.8089, 1.2355, 0.7202, 0.8532, 0.6758, 1.1468, 0.8089, 0.7202], q:[0.7423, 0.4488], qb:[0.4044, 0.8754], phi:[0.3823]] [X:[], M:[[8, 0], [-2, 2], [-4, -4], [-3, 3], [7, -7], [3, -3], [-9, 1], [13, -5]], q:[[-1, -3], [-7, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_8$, $ M_3$, $ M_1$, $ M_7$, $ M_4$, $ M_6$, $ M_2$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ M_5M_8$, $ M_3M_5$, $ M_8^2$, $ M_3M_8$, $ M_3^2$, $ M_1M_5$, $ M_5M_7$, $ M_1M_8$, $ M_1M_3$, $ M_4M_5$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_7$, $ M_4M_8$, $ M_3M_4$, $ \phi_1q_1q_2$, $ M_1^2$, $ M_1M_7$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_1M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_7$, $ M_4^2$, $ \phi_1q_2\tilde{q}_2$, $ M_5M_6$, $ M_6M_8$, $ M_3M_6$, $ \phi_1q_1^2$, $ M_2M_5$, $ M_5\phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ M_2M_8$, $ M_8\phi_1q_2\tilde{q}_1$, $ M_2M_3$, $ M_6M_7$ . -2 t^2.03 + 2*t^2.16 + 2*t^2.43 + t^2.56 + t^3.44 + 2*t^3.71 + t^4.05 + 2*t^4.19 + 3*t^4.32 + 2*t^4.45 + 5*t^4.59 + 2*t^4.72 + 4*t^4.85 + 2*t^4.99 + t^5.12 + t^5.47 + 2*t^5.6 + t^5.73 + 4*t^5.87 - 2*t^6. + t^6.08 + 2*t^6.13 + 2*t^6.22 + t^6.27 + 3*t^6.35 + 6*t^6.48 + 5*t^6.61 + 8*t^6.75 + 7*t^6.88 + 8*t^7.01 + 4*t^7.15 + 4*t^7.28 + 3*t^7.41 + t^7.5 + 2*t^7.63 + 4*t^7.76 + 2*t^7.89 + 4*t^8.03 + t^8.11 - 4*t^8.16 + 2*t^8.24 + 4*t^8.29 + 3*t^8.38 - 6*t^8.43 + 6*t^8.51 + 10*t^8.64 - 2*t^8.69 + 8*t^8.78 + 15*t^8.91 - t^4.15/y - t^6.17/y - (2*t^6.31)/y - (2*t^6.57)/y + (2*t^7.19)/y + t^7.32/y + (2*t^7.45)/y + (5*t^7.59)/y + (4*t^7.72)/y + t^7.85/y + (4*t^7.99)/y + t^8.12/y - t^8.2/y - (2*t^8.33)/y - (2*t^8.47)/y - (2*t^8.73)/y + (6*t^8.87)/y - t^4.15*y - t^6.17*y - 2*t^6.31*y - 2*t^6.57*y + 2*t^7.19*y + t^7.32*y + 2*t^7.45*y + 5*t^7.59*y + 4*t^7.72*y + t^7.85*y + 4*t^7.99*y + t^8.12*y - t^8.2*y - 2*t^8.33*y - 2*t^8.47*y - 2*t^8.73*y + 6*t^8.87*y (g1^7*t^2.03)/g2^7 + (g1^13*t^2.16)/g2^5 + t^2.16/(g1^4*g2^4) + g1^8*t^2.43 + (g2*t^2.43)/g1^9 + (g2^3*t^2.56)/g1^3 + (g1^3*t^3.44)/g2^3 + (2*g2^2*t^3.71)/g1^2 + (g1^14*t^4.05)/g2^14 + (g1^20*t^4.19)/g2^12 + (g1^3*t^4.19)/g2^11 + (g1^26*t^4.32)/g2^10 + (g1^9*t^4.32)/g2^9 + t^4.32/(g1^8*g2^8) + (g1^15*t^4.45)/g2^7 + t^4.45/(g1^2*g2^6) + (g1^21*t^4.59)/g2^5 + (3*g1^4*t^4.59)/g2^4 + t^4.59/(g1^13*g2^3) + (g1^10*t^4.72)/g2^2 + t^4.72/(g1^7*g2) + g1^16*t^4.85 + (2*g2*t^4.85)/g1 + (g2^2*t^4.85)/g1^18 + g1^5*g2^3*t^4.99 + (g2^4*t^4.99)/g1^12 + (g2^6*t^5.12)/g1^6 + (g1^10*t^5.47)/g2^10 + (g1^16*t^5.6)/g2^8 + t^5.6/(g1*g2^7) + (g1^5*t^5.73)/g2^5 + (2*g1^11*t^5.87)/g2^3 + (2*t^5.87)/(g1^6*g2^2) - 2*t^6. + (g1^21*t^6.08)/g2^21 + g1^6*g2^2*t^6.13 + (g2^3*t^6.13)/g1^11 + (g1^27*t^6.22)/g2^19 + (g1^10*t^6.22)/g2^18 + (g2^5*t^6.27)/g1^5 + (g1^33*t^6.35)/g2^17 + (g1^16*t^6.35)/g2^16 + t^6.35/(g1*g2^15) + (g1^39*t^6.48)/g2^15 + (2*g1^22*t^6.48)/g2^14 + (2*g1^5*t^6.48)/g2^13 + t^6.48/(g1^12*g2^12) + (g1^28*t^6.61)/g2^12 + (3*g1^11*t^6.61)/g2^11 + t^6.61/(g1^6*g2^10) + (g1^34*t^6.75)/g2^10 + (3*g1^17*t^6.75)/g2^9 + (3*t^6.75)/g2^8 + t^6.75/(g1^17*g2^7) + (2*g1^23*t^6.88)/g2^7 + (3*g1^6*t^6.88)/g2^6 + (2*t^6.88)/(g1^11*g2^5) + (g1^29*t^7.01)/g2^5 + (3*g1^12*t^7.01)/g2^4 + (3*t^7.01)/(g1^5*g2^3) + t^7.01/(g1^22*g2^2) + t^7.15/g1^16 + (g1^18*t^7.15)/g2^2 + (2*g1*t^7.15)/g2 + g1^24*t^7.28 + g1^7*g2*t^7.28 + (g2^2*t^7.28)/g1^10 + (g2^3*t^7.28)/g1^27 + g1^13*g2^3*t^7.41 + (g2^4*t^7.41)/g1^4 + (g2^5*t^7.41)/g1^21 + (g1^17*t^7.5)/g2^17 + (g1^23*t^7.63)/g2^15 + (g1^6*t^7.63)/g2^14 + (g1^29*t^7.76)/g2^13 + (2*g1^12*t^7.76)/g2^12 + t^7.76/(g1^5*g2^11) + (g1^18*t^7.89)/g2^10 + (g1*t^7.89)/g2^9 + (2*g1^24*t^8.03)/g2^8 + (2*t^8.03)/(g1^10*g2^6) + (g1^28*t^8.11)/g2^28 - (2*g1^13*t^8.16)/g2^5 - (2*t^8.16)/(g1^4*g2^4) + (g1^34*t^8.24)/g2^26 + (g1^17*t^8.24)/g2^25 + (g1^19*t^8.29)/g2^3 + (2*g1^2*t^8.29)/g2^2 + t^8.29/(g1^15*g2) + (g1^40*t^8.38)/g2^24 + (g1^23*t^8.38)/g2^23 + (g1^6*t^8.38)/g2^22 - 3*g1^8*t^8.43 - (3*g2*t^8.43)/g1^9 + (g1^46*t^8.51)/g2^22 + (2*g1^29*t^8.51)/g2^21 + (2*g1^12*t^8.51)/g2^20 + t^8.51/(g1^5*g2^19) + g1^14*g2^2*t^8.56 - (2*g2^3*t^8.56)/g1^3 + (g2^4*t^8.56)/g1^20 + (g1^52*t^8.64)/g2^20 + (2*g1^35*t^8.64)/g2^19 + (4*g1^18*t^8.64)/g2^18 + (2*g1*t^8.64)/g2^17 + t^8.64/(g1^16*g2^16) - g1^3*g2^5*t^8.69 - (g2^6*t^8.69)/g1^14 + (g1^41*t^8.78)/g2^17 + (3*g1^24*t^8.78)/g2^16 + (3*g1^7*t^8.78)/g2^15 + t^8.78/(g1^10*g2^14) + (g1^47*t^8.91)/g2^15 + (4*g1^30*t^8.91)/g2^14 + (5*g1^13*t^8.91)/g2^13 + (4*t^8.91)/(g1^4*g2^12) + t^8.91/(g1^21*g2^11) - (g1*t^4.15)/(g2*y) - (g1^8*t^6.17)/(g2^8*y) - (g1^14*t^6.31)/(g2^6*y) - t^6.31/(g1^3*g2^5*y) - t^6.57/(g1^8*y) - (g1^9*t^6.57)/(g2*y) + (g1^20*t^7.19)/(g2^12*y) + (g1^3*t^7.19)/(g2^11*y) + (g1^9*t^7.32)/(g2^9*y) + (g1^15*t^7.45)/(g2^7*y) + t^7.45/(g1^2*g2^6*y) + (g1^21*t^7.59)/(g2^5*y) + (3*g1^4*t^7.59)/(g2^4*y) + t^7.59/(g1^13*g2^3*y) + (2*g1^10*t^7.72)/(g2^2*y) + (2*t^7.72)/(g1^7*g2*y) + (g2*t^7.85)/(g1*y) + (2*g1^5*g2^3*t^7.99)/y + (2*g2^4*t^7.99)/(g1^12*y) + (g2^6*t^8.12)/(g1^6*y) - (g1^15*t^8.2)/(g2^15*y) - (g1^21*t^8.33)/(g2^13*y) - (g1^4*t^8.33)/(g2^12*y) - (g1^27*t^8.47)/(g2^11*y) - t^8.47/(g1^7*g2^9*y) - (g1^22*t^8.73)/(g2^6*y) - t^8.73/(g1^12*g2^4*y) + (3*g1^11*t^8.87)/(g2^3*y) + (3*t^8.87)/(g1^6*g2^2*y) - (g1*t^4.15*y)/g2 - (g1^8*t^6.17*y)/g2^8 - (g1^14*t^6.31*y)/g2^6 - (t^6.31*y)/(g1^3*g2^5) - (t^6.57*y)/g1^8 - (g1^9*t^6.57*y)/g2 + (g1^20*t^7.19*y)/g2^12 + (g1^3*t^7.19*y)/g2^11 + (g1^9*t^7.32*y)/g2^9 + (g1^15*t^7.45*y)/g2^7 + (t^7.45*y)/(g1^2*g2^6) + (g1^21*t^7.59*y)/g2^5 + (3*g1^4*t^7.59*y)/g2^4 + (t^7.59*y)/(g1^13*g2^3) + (2*g1^10*t^7.72*y)/g2^2 + (2*t^7.72*y)/(g1^7*g2) + (g2*t^7.85*y)/g1 + 2*g1^5*g2^3*t^7.99*y + (2*g2^4*t^7.99*y)/g1^12 + (g2^6*t^8.12*y)/g1^6 - (g1^15*t^8.2*y)/g2^15 - (g1^21*t^8.33*y)/g2^13 - (g1^4*t^8.33*y)/g2^12 - (g1^27*t^8.47*y)/g2^11 - (t^8.47*y)/(g1^7*g2^9) - (g1^22*t^8.73*y)/g2^6 - (t^8.73*y)/(g1^12*g2^4) + (3*g1^11*t^8.87*y)/g2^3 + (3*t^8.87*y)/(g1^6*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2899 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.655 0.8217 0.7971 [X:[], M:[0.8212, 1.231, 0.7168, 0.8466, 0.6914, 1.1534, 0.7944], q:[0.7429, 0.436], qb:[0.4106, 0.8726], phi:[0.3845]] t^2.07 + t^2.15 + t^2.38 + t^2.46 + t^2.54 + t^3.46 + 2*t^3.69 + t^3.77 + t^4.15 + t^4.22 + t^4.3 + t^4.46 + t^4.53 + t^4.54 + 2*t^4.61 + t^4.69 + t^4.77 + 2*t^4.85 + t^4.92 + t^4.93 + t^5. + t^5.08 + t^5.53 + t^5.61 + t^5.77 + 3*t^5.84 + t^5.92 - 2*t^6. - t^4.15/y - t^4.15*y detail