Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56981 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{8}$ | 0.7063 | 0.9014 | 0.7836 | [M:[1.1707, 1.0334, 0.8293, 0.7998, 1.0834, 0.7419, 0.6829, 0.8293], q:[0.3999, 0.4294], qb:[0.5667, 0.7709], phi:[0.4583]] | [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [0, 4], [-2, 18], [4, -28], [-1, 7]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{8}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{7}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{8}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{8}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | ${}$ | -3 | t^2.049 + t^2.226 + t^2.399 + 2*t^2.488 + t^2.988 + t^3.1 + t^3.25 + t^3.863 + t^4.013 + t^4.098 + 2*t^4.275 + t^4.363 + t^4.448 + t^4.452 + 2*t^4.537 + t^4.625 + 2*t^4.714 + t^4.775 + t^4.799 + 2*t^4.887 + 3*t^4.976 + t^5.037 + t^5.149 + t^5.214 + t^5.299 + t^5.326 + t^5.388 + 3*t^5.476 + t^5.588 + t^5.65 + 2*t^5.738 + t^5.976 - 3*t^6. + t^6.061 + t^6.089 + t^6.146 + t^6.201 + 2*t^6.238 + 2*t^6.323 + 2*t^6.35 + t^6.412 + t^6.497 + 3*t^6.5 + 2*t^6.585 + t^6.589 - t^6.612 + 2*t^6.674 + t^6.677 + 3*t^6.762 + t^6.824 + t^6.847 + 3*t^6.851 - t^6.874 + 2*t^6.936 + 2*t^6.939 + 2*t^7.001 + 2*t^7.024 + t^7.086 + 2*t^7.113 + t^7.174 + 2*t^7.198 + 2*t^7.201 + 4*t^7.263 + t^7.286 + t^7.348 + t^7.351 + 2*t^7.375 + t^7.436 + t^7.44 + 3*t^7.463 + 3*t^7.525 + t^7.552 + t^7.613 + t^7.637 + t^7.698 + 3*t^7.702 + t^7.763 + t^7.787 + t^7.814 + 2*t^7.875 + 4*t^7.964 - t^7.987 + 2*t^8.025 - 2*t^8.049 + t^8.076 + t^8.11 + t^8.137 + t^8.195 + t^8.202 - t^8.226 + t^8.249 + 2*t^8.287 - t^8.311 + t^8.314 + 2*t^8.372 + t^8.376 - 3*t^8.399 + t^8.426 + t^8.461 + 4*t^8.464 - 7*t^8.488 + t^8.546 + 3*t^8.549 + t^8.576 + t^8.6 + 2*t^8.634 + 2*t^8.638 - t^8.661 + t^8.688 + 2*t^8.723 + 5*t^8.726 - t^8.75 + t^8.788 + 3*t^8.811 + t^8.815 + t^8.838 + t^8.873 + t^8.896 + 2*t^8.9 + t^8.903 - t^8.923 + t^8.965 + 2*t^8.985 + t^8.988 - t^4.375/y - t^6.424/y - t^6.601/y - t^6.774/y - t^6.863/y + (2*t^7.275)/y + t^7.448/y - t^7.475/y + (2*t^7.537)/y + t^7.625/y + (2*t^7.714)/y + (3*t^7.887)/y + (2*t^7.976)/y + t^8.037/y + (2*t^8.149)/y + t^8.214/y + t^8.299/y + (2*t^8.326)/y + t^8.388/y - t^8.473/y + (3*t^8.476)/y + t^8.5/y + (2*t^8.588)/y + (2*t^8.738)/y - t^8.823/y - t^8.827/y - t^4.375*y - t^6.424*y - t^6.601*y - t^6.774*y - t^6.863*y + 2*t^7.275*y + t^7.448*y - t^7.475*y + 2*t^7.537*y + t^7.625*y + 2*t^7.714*y + 3*t^7.887*y + 2*t^7.976*y + t^8.037*y + 2*t^8.149*y + t^8.214*y + t^8.299*y + 2*t^8.326*y + t^8.388*y - t^8.473*y + 3*t^8.476*y + t^8.5*y + 2*t^8.588*y + 2*t^8.738*y - t^8.823*y - t^8.827*y | (g1^4*t^2.049)/g2^28 + (g2^18*t^2.226)/g1^2 + (g1^2*t^2.399)/g2^16 + (2*g2^7*t^2.488)/g1 + (g2^15*t^2.988)/g1 + (g2^8*t^3.1)/g1^2 + g2^4*t^3.25 + (g2^5*t^3.863)/g1 + g1*g2*t^4.013 + (g1^8*t^4.098)/g2^56 + (2*g1^2*t^4.275)/g2^10 + (g2^13*t^4.363)/g1 + (g1^6*t^4.448)/g2^44 + (g2^36*t^4.452)/g1^4 + (2*g1^3*t^4.537)/g2^21 + g2^2*t^4.625 + (2*g2^25*t^4.714)/g1^3 + (g1^2*t^4.775)/g2^2 + (g1^4*t^4.799)/g2^32 + (2*g1*t^4.887)/g2^9 + (3*g2^14*t^4.976)/g1^2 + (g1^3*t^5.037)/g2^13 + (g1^2*t^5.149)/g2^20 + (g2^33*t^5.214)/g1^3 + (g1^4*t^5.299)/g2^24 + (g2^26*t^5.326)/g1^4 + (g1*t^5.388)/g2 + (3*g2^22*t^5.476)/g1^2 + (g2^15*t^5.588)/g1^3 + (g1^2*t^5.65)/g2^12 + (2*g2^11*t^5.738)/g1 + (g2^30*t^5.976)/g1^2 - 3*t^6. + (g1^5*t^6.061)/g2^27 + (g2^23*t^6.089)/g1^3 + (g1^12*t^6.146)/g2^84 + (g2^16*t^6.201)/g1^4 + (2*g2^19*t^6.238)/g1 + (2*g1^6*t^6.323)/g2^38 + (2*g2^12*t^6.35)/g1^2 + (g1^3*t^6.412)/g2^15 + (g1^10*t^6.497)/g2^72 + 3*g2^8*t^6.5 + (2*g1^7*t^6.585)/g2^49 + (g2^31*t^6.589)/g1^3 - (g2*t^6.612)/g1 + (2*g1^4*t^6.674)/g2^26 + (g2^54*t^6.677)/g1^6 + (3*g1*t^6.762)/g2^3 + (g1^6*t^6.824)/g2^30 + (g1^8*t^6.847)/g2^60 + (3*g2^20*t^6.851)/g1^2 - t^6.874/g2^10 + (2*g1^5*t^6.936)/g2^37 + (2*g2^43*t^6.939)/g1^5 + 2*g2^16*t^7.001 + (2*g1^2*t^7.024)/g2^14 + (g1^7*t^7.086)/g2^41 + (2*g2^9*t^7.113)/g1 + (g1^4*t^7.174)/g2^18 + (2*g1^6*t^7.198)/g2^48 + (2*g2^32*t^7.201)/g1^4 + 4*g1*g2^5*t^7.263 + (g1^3*t^7.286)/g2^25 + (g1^8*t^7.348)/g2^52 + (g2^28*t^7.351)/g1^2 + (2*t^7.375)/g2^2 + (g1^5*t^7.436)/g2^29 + (g2^51*t^7.44)/g1^5 + (3*g2^21*t^7.463)/g1^3 + (3*g1^2*t^7.525)/g2^6 + (g2^44*t^7.552)/g1^6 + (g2^17*t^7.613)/g1 + (g1*t^7.637)/g2^13 + (g1^6*t^7.698)/g2^40 + (3*g2^40*t^7.702)/g1^4 + g1*g2^13*t^7.763 + (g1^3*t^7.787)/g2^17 + (g2^33*t^7.814)/g1^5 + 2*g2^6*t^7.875 + (4*g2^29*t^7.964)/g1^3 - t^7.987/(g1*g2) + 2*g1^2*g2^2*t^8.025 - (2*g1^4*t^8.049)/g2^28 + (g2^22*t^8.076)/g1^4 + (g1^9*t^8.11)/g2^55 + (g1*t^8.137)/g2^5 + (g1^16*t^8.195)/g2^112 + (g2^48*t^8.202)/g1^4 - (g2^18*t^8.226)/g1^2 + t^8.249/g2^12 + (2*g1^3*t^8.287)/g2^9 - (g1^5*t^8.311)/g2^39 + (g2^41*t^8.314)/g1^5 + (2*g1^10*t^8.372)/g2^66 + g2^14*t^8.376 - (3*g1^2*t^8.399)/g2^16 + (g2^34*t^8.426)/g1^6 + (g1^7*t^8.461)/g2^43 + (4*g2^37*t^8.464)/g1^3 - (7*g2^7*t^8.488)/g1 + (g1^14*t^8.546)/g2^100 + (3*g1^4*t^8.549)/g2^20 + (g2^30*t^8.576)/g1^4 + t^8.6/g1^2 + (2*g1^11*t^8.634)/g2^77 + 2*g1*g2^3*t^8.638 - (g1^3*t^8.661)/g2^27 + (g2^23*t^8.688)/g1^5 + (2*g1^8*t^8.723)/g2^54 + (5*g2^26*t^8.726)/g1^2 - t^8.75/g2^4 + (g1^3*t^8.788)/g2 + (3*g1^5*t^8.811)/g2^31 + (g2^49*t^8.815)/g1^5 + (g2^19*t^8.838)/g1^3 + (g1^10*t^8.873)/g2^58 + (g1^12*t^8.896)/g2^88 + (2*g1^2*t^8.9)/g2^8 + (g2^72*t^8.903)/g1^8 - (g1^4*t^8.923)/g2^38 + (g2^45*t^8.965)/g1^3 + (2*g1^9*t^8.985)/g2^65 + (g2^15*t^8.988)/g1 - t^4.375/(g2^2*y) - (g1^4*t^6.424)/(g2^30*y) - (g2^16*t^6.601)/(g1^2*y) - (g1^2*t^6.774)/(g2^18*y) - (g2^5*t^6.863)/(g1*y) + (2*g1^2*t^7.275)/(g2^10*y) + (g1^6*t^7.448)/(g2^44*y) - (g2^6*t^7.475)/(g1^2*y) + (2*g1^3*t^7.537)/(g2^21*y) + (g2^2*t^7.625)/y + (2*g2^25*t^7.714)/(g1^3*y) + (3*g1*t^7.887)/(g2^9*y) + (2*g2^14*t^7.976)/(g1^2*y) + (g1^3*t^8.037)/(g2^13*y) + (2*g1^2*t^8.149)/(g2^20*y) + (g2^33*t^8.214)/(g1^3*y) + (g1^4*t^8.299)/(g2^24*y) + (2*g2^26*t^8.326)/(g1^4*y) + (g1*t^8.388)/(g2*y) - (g1^8*t^8.473)/(g2^58*y) + (3*g2^22*t^8.476)/(g1^2*y) + t^8.5/(g2^8*y) + (2*g2^15*t^8.588)/(g1^3*y) + (2*g2^11*t^8.738)/(g1*y) - (g1^6*t^8.823)/(g2^46*y) - (g2^34*t^8.827)/(g1^4*y) - (t^4.375*y)/g2^2 - (g1^4*t^6.424*y)/g2^30 - (g2^16*t^6.601*y)/g1^2 - (g1^2*t^6.774*y)/g2^18 - (g2^5*t^6.863*y)/g1 + (2*g1^2*t^7.275*y)/g2^10 + (g1^6*t^7.448*y)/g2^44 - (g2^6*t^7.475*y)/g1^2 + (2*g1^3*t^7.537*y)/g2^21 + g2^2*t^7.625*y + (2*g2^25*t^7.714*y)/g1^3 + (3*g1*t^7.887*y)/g2^9 + (2*g2^14*t^7.976*y)/g1^2 + (g1^3*t^8.037*y)/g2^13 + (2*g1^2*t^8.149*y)/g2^20 + (g2^33*t^8.214*y)/g1^3 + (g1^4*t^8.299*y)/g2^24 + (2*g2^26*t^8.326*y)/g1^4 + (g1*t^8.388*y)/g2 - (g1^8*t^8.473*y)/g2^58 + (3*g2^22*t^8.476*y)/g1^2 + (t^8.5*y)/g2^8 + (2*g2^15*t^8.588*y)/g1^3 + (2*g2^11*t^8.738*y)/g1 - (g1^6*t^8.823*y)/g2^46 - (g2^34*t^8.827*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55354 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.6918 | 0.8766 | 0.7892 | [M:[1.1677, 1.0397, 0.8323, 0.7938, 1.0833, 0.7479, 0.6708], q:[0.3969, 0.4354], qb:[0.5634, 0.7708], phi:[0.4584]] | t^2.012 + t^2.244 + t^2.381 + t^2.497 + t^2.996 + t^3.119 + t^3.25 + t^3.503 + t^3.872 + t^4.003 + t^4.025 + 2*t^4.256 + t^4.372 + t^4.394 + t^4.487 + t^4.509 + t^4.625 + t^4.741 + t^4.755 + t^4.763 + t^4.878 + t^4.994 + t^5.009 + t^5.131 + t^5.24 + t^5.262 + t^5.363 + t^5.378 + 2*t^5.493 + t^5.515 + t^5.631 + 2*t^5.747 + t^5.884 + t^5.993 - 2*t^6. - t^4.375/y - t^4.375*y | detail |