Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6503 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{10}M_{5}$ | 0.7063 | 0.9014 | 0.7836 | [M:[1.0334, 0.7998, 1.0039, 0.8293, 1.1707, 1.0834, 0.7419, 0.9961, 0.6829, 0.8293], q:[0.5667, 0.3999], qb:[0.4294, 0.7709], phi:[0.4583]] | [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [0, 8], [2, 6], [1, 15], [-4, 4], [1, -1]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{10}$, ${ }M_{4}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{9}$, ${ }M_{7}^{2}$, ${ }M_{10}M_{9}$, ${ }M_{4}M_{9}$, ${ }M_{2}M_{7}$, ${ }M_{10}M_{7}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{10}M_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{10}^{2}$, ${ }M_{10}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{8}M_{9}$, ${ }M_{1}M_{9}$, ${ }M_{7}M_{8}$, ${ }M_{6}M_{9}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{10}M_{8}$, ${ }M_{4}M_{8}$, ${ }M_{1}M_{10}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{10}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{8}^{2}$ | ${}$ | -3 | t^2.049 + t^2.226 + t^2.399 + 2*t^2.488 + t^2.988 + t^3.1 + t^3.25 + t^3.863 + t^4.013 + t^4.098 + 2*t^4.275 + t^4.363 + t^4.448 + t^4.452 + 2*t^4.537 + t^4.625 + 2*t^4.714 + t^4.775 + t^4.799 + 2*t^4.887 + 3*t^4.976 + t^5.037 + t^5.149 + t^5.214 + t^5.299 + t^5.326 + t^5.388 + 3*t^5.476 + t^5.588 + t^5.65 + 2*t^5.738 + t^5.976 - 3*t^6. + t^6.061 + t^6.089 + t^6.146 + t^6.201 + 2*t^6.238 + 2*t^6.323 + 2*t^6.35 + t^6.412 + t^6.497 + 3*t^6.5 + 2*t^6.585 + t^6.589 - t^6.612 + 2*t^6.674 + t^6.677 + 3*t^6.762 + t^6.824 + t^6.847 + 3*t^6.851 - t^6.874 + 2*t^6.936 + 2*t^6.939 + 2*t^7.001 + 2*t^7.024 + t^7.086 + 2*t^7.113 + t^7.174 + 2*t^7.198 + 2*t^7.201 + 4*t^7.263 + t^7.286 + t^7.348 + t^7.351 + 2*t^7.375 + t^7.436 + t^7.44 + 3*t^7.463 + 3*t^7.525 + t^7.552 + t^7.613 + t^7.637 + t^7.698 + 3*t^7.702 + t^7.763 + t^7.787 + t^7.814 + 2*t^7.875 + 4*t^7.964 - t^7.987 + 2*t^8.025 - 2*t^8.049 + t^8.076 + t^8.11 + t^8.137 + t^8.195 + t^8.202 - t^8.226 + t^8.249 + 2*t^8.287 - t^8.311 + t^8.314 + 2*t^8.372 + t^8.376 - 3*t^8.399 + t^8.426 + t^8.461 + 4*t^8.464 - 7*t^8.488 + t^8.546 + 3*t^8.549 + t^8.576 + t^8.6 + 2*t^8.634 + 2*t^8.638 - t^8.661 + t^8.688 + 2*t^8.723 + 5*t^8.726 - t^8.75 + t^8.788 + 3*t^8.811 + t^8.815 + t^8.838 + t^8.873 + t^8.896 + 2*t^8.9 + t^8.903 - t^8.923 + t^8.965 + 2*t^8.985 + t^8.988 - t^4.375/y - t^6.424/y - t^6.601/y - t^6.774/y - t^6.863/y + (2*t^7.275)/y + t^7.448/y - t^7.475/y + (2*t^7.537)/y + t^7.625/y + (2*t^7.714)/y + (3*t^7.887)/y + (2*t^7.976)/y + t^8.037/y + (2*t^8.149)/y + t^8.214/y + t^8.299/y + (2*t^8.326)/y + t^8.388/y - t^8.473/y + (3*t^8.476)/y + t^8.5/y + (2*t^8.588)/y + (2*t^8.738)/y - t^8.823/y - t^8.827/y - t^4.375*y - t^6.424*y - t^6.601*y - t^6.774*y - t^6.863*y + 2*t^7.275*y + t^7.448*y - t^7.475*y + 2*t^7.537*y + t^7.625*y + 2*t^7.714*y + 3*t^7.887*y + 2*t^7.976*y + t^8.037*y + 2*t^8.149*y + t^8.214*y + t^8.299*y + 2*t^8.326*y + t^8.388*y - t^8.473*y + 3*t^8.476*y + t^8.5*y + 2*t^8.588*y + 2*t^8.738*y - t^8.823*y - t^8.827*y | (g2^4*t^2.049)/g1^4 + g1^2*g2^6*t^2.226 + t^2.399/(g1^2*g2^2) + (2*g1*t^2.488)/g2 + g1*g2^15*t^2.988 + (g1^2*t^3.1)/g2^14 + g2^8*t^3.25 + (g1*t^3.863)/g2^5 + (g2^17*t^4.013)/g1 + (g2^8*t^4.098)/g1^8 + (2*g2^10*t^4.275)/g1^2 + g1*g2^11*t^4.363 + (g2^2*t^4.448)/g1^6 + g1^4*g2^12*t^4.452 + (2*g2^3*t^4.537)/g1^3 + g2^4*t^4.625 + 2*g1^3*g2^5*t^4.714 + (g2^26*t^4.775)/g1^2 + t^4.799/(g1^4*g2^4) + (2*t^4.887)/(g1*g2^3) + (3*g1^2*t^4.976)/g2^2 + (g2^19*t^5.037)/g1^3 + t^5.149/(g1^2*g2^10) + g1^3*g2^21*t^5.214 + (g2^12*t^5.299)/g1^4 + (g1^4*t^5.326)/g2^8 + (g2^13*t^5.388)/g1 + 3*g1^2*g2^14*t^5.476 + (g1^3*t^5.588)/g2^15 + (g2^6*t^5.65)/g1^2 + 2*g1*g2^7*t^5.738 + g1^2*g2^30*t^5.976 - 3*t^6. + (g2^21*t^6.061)/g1^5 + g1^3*g2*t^6.089 + (g2^12*t^6.146)/g1^12 + (g1^4*t^6.201)/g2^28 + 2*g1*g2^23*t^6.238 + (2*g2^14*t^6.323)/g1^6 + (2*g1^2*t^6.35)/g2^6 + (g2^15*t^6.412)/g1^3 + (g2^6*t^6.497)/g1^10 + 3*g2^16*t^6.5 + (2*g2^7*t^6.585)/g1^7 + g1^3*g2^17*t^6.589 - (g1*t^6.612)/g2^13 + (2*g2^8*t^6.674)/g1^4 + g1^6*g2^18*t^6.677 + (3*g2^9*t^6.762)/g1 + (g2^30*t^6.824)/g1^6 + t^6.847/g1^8 + 3*g1^2*g2^10*t^6.851 - t^6.874/g2^20 + (2*g2*t^6.936)/g1^5 + 2*g1^5*g2^11*t^6.939 + 2*g2^32*t^7.001 + (2*g2^2*t^7.024)/g1^2 + (g2^23*t^7.086)/g1^7 + 2*g1*g2^3*t^7.113 + (g2^24*t^7.174)/g1^4 + (2*t^7.198)/(g1^6*g2^6) + 2*g1^4*g2^4*t^7.201 + (4*g2^25*t^7.263)/g1 + t^7.286/(g1^3*g2^5) + (g2^16*t^7.348)/g1^8 + g1^2*g2^26*t^7.351 + (2*t^7.375)/g2^4 + (g2^17*t^7.436)/g1^5 + g1^5*g2^27*t^7.44 + (3*g1^3*t^7.463)/g2^3 + (3*g2^18*t^7.525)/g1^2 + (g1^6*t^7.552)/g2^2 + g1*g2^19*t^7.613 + t^7.637/(g1*g2^11) + (g2^10*t^7.698)/g1^6 + 3*g1^4*g2^20*t^7.702 + (g2^41*t^7.763)/g1 + (g2^11*t^7.787)/g1^3 + (g1^5*t^7.814)/g2^9 + 2*g2^12*t^7.875 + 4*g1^3*g2^13*t^7.964 - (g1*t^7.987)/g2^17 + (2*g2^34*t^8.025)/g1^2 - (2*g2^4*t^8.049)/g1^4 + (g1^4*t^8.076)/g2^16 + (g2^25*t^8.11)/g1^9 + (g2^5*t^8.137)/g1 + (g2^16*t^8.195)/g1^16 + g1^4*g2^36*t^8.202 - g1^2*g2^6*t^8.226 + t^8.249/g2^24 + (2*g2^27*t^8.287)/g1^3 - t^8.311/(g1^5*g2^3) + g1^5*g2^7*t^8.314 + (2*g2^18*t^8.372)/g1^10 + g2^28*t^8.376 - (3*t^8.399)/(g1^2*g2^2) + (g1^6*t^8.426)/g2^22 + (g2^19*t^8.461)/g1^7 + 4*g1^3*g2^29*t^8.464 - (7*g1*t^8.488)/g2 + (g2^10*t^8.546)/g1^14 + (3*g2^20*t^8.549)/g1^4 + g1^4*t^8.576 + (g1^2*t^8.6)/g2^30 + (2*g2^11*t^8.634)/g1^11 + (2*g2^21*t^8.638)/g1 - t^8.661/(g1^3*g2^9) + (g1^5*t^8.688)/g2^29 + (2*g2^12*t^8.723)/g1^8 + 5*g1^2*g2^22*t^8.726 - t^8.75/g2^8 + (g2^43*t^8.788)/g1^3 + (3*g2^13*t^8.811)/g1^5 + g1^5*g2^23*t^8.815 + (g1^3*t^8.838)/g2^7 + (g2^34*t^8.873)/g1^10 + (g2^4*t^8.896)/g1^12 + (2*g2^14*t^8.9)/g1^2 + g1^8*g2^24*t^8.903 - t^8.923/(g1^4*g2^16) + g1^3*g2^45*t^8.965 + (2*g2^5*t^8.985)/g1^9 + g1*g2^15*t^8.988 - t^4.375/(g2^4*y) - t^6.424/(g1^4*y) - (g1^2*g2^2*t^6.601)/y - t^6.774/(g1^2*g2^6*y) - (g1*t^6.863)/(g2^5*y) + (2*g2^10*t^7.275)/(g1^2*y) + (g2^2*t^7.448)/(g1^6*y) - (g1^2*t^7.475)/(g2^18*y) + (2*g2^3*t^7.537)/(g1^3*y) + (g2^4*t^7.625)/y + (2*g1^3*g2^5*t^7.714)/y + (3*t^7.887)/(g1*g2^3*y) + (2*g1^2*t^7.976)/(g2^2*y) + (g2^19*t^8.037)/(g1^3*y) + (2*t^8.149)/(g1^2*g2^10*y) + (g1^3*g2^21*t^8.214)/y + (g2^12*t^8.299)/(g1^4*y) + (2*g1^4*t^8.326)/(g2^8*y) + (g2^13*t^8.388)/(g1*y) - (g2^4*t^8.473)/(g1^8*y) + (3*g1^2*g2^14*t^8.476)/y + t^8.5/(g2^16*y) + (2*g1^3*t^8.588)/(g2^15*y) + (2*g1*g2^7*t^8.738)/y - t^8.823/(g1^6*g2^2*y) - (g1^4*g2^8*t^8.827)/y - (t^4.375*y)/g2^4 - (t^6.424*y)/g1^4 - g1^2*g2^2*t^6.601*y - (t^6.774*y)/(g1^2*g2^6) - (g1*t^6.863*y)/g2^5 + (2*g2^10*t^7.275*y)/g1^2 + (g2^2*t^7.448*y)/g1^6 - (g1^2*t^7.475*y)/g2^18 + (2*g2^3*t^7.537*y)/g1^3 + g2^4*t^7.625*y + 2*g1^3*g2^5*t^7.714*y + (3*t^7.887*y)/(g1*g2^3) + (2*g1^2*t^7.976*y)/g2^2 + (g2^19*t^8.037*y)/g1^3 + (2*t^8.149*y)/(g1^2*g2^10) + g1^3*g2^21*t^8.214*y + (g2^12*t^8.299*y)/g1^4 + (2*g1^4*t^8.326*y)/g2^8 + (g2^13*t^8.388*y)/g1 - (g2^4*t^8.473*y)/g1^8 + 3*g1^2*g2^14*t^8.476*y + (t^8.5*y)/g2^16 + (2*g1^3*t^8.588*y)/g2^15 + 2*g1*g2^7*t^8.738*y - (t^8.823*y)/(g1^6*g2^2) - g1^4*g2^8*t^8.827*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4852 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6918 | 0.8766 | 0.7892 | [M:[1.0397, 0.7938, 1.0012, 0.8323, 1.1677, 1.0833, 0.7479, 0.9988, 0.6708], q:[0.5634, 0.3969], qb:[0.4354, 0.7708], phi:[0.4584]] | t^2.012 + t^2.244 + t^2.381 + t^2.497 + t^2.996 + t^3.119 + t^3.25 + t^3.503 + t^3.872 + t^4.003 + t^4.025 + 2*t^4.256 + t^4.372 + t^4.394 + t^4.487 + t^4.509 + t^4.625 + t^4.741 + t^4.755 + t^4.763 + t^4.878 + t^4.994 + t^5.009 + t^5.131 + t^5.24 + t^5.262 + t^5.363 + t^5.378 + 2*t^5.493 + t^5.515 + t^5.631 + 2*t^5.747 + t^5.884 + t^5.993 - 2*t^6. - t^4.375/y - t^4.375*y | detail |