Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6503 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1^2$ + $ M_7\phi_1q_2^2$ + $ M_3M_8$ + $ M_9\phi_1\tilde{q}_1^2$ + $ M_10M_5$ 0.7063 0.9014 0.7836 [X:[], M:[1.0334, 0.7998, 1.0039, 0.8293, 1.1707, 1.0834, 0.7419, 0.9961, 0.6829, 0.8293], q:[0.5667, 0.3999], qb:[0.4294, 0.7709], phi:[0.4583]] [X:[], M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [0, 8], [2, 6], [1, 15], [-4, 4], [1, -1]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_9$, $ M_7$, $ M_2$, $ M_10$, $ M_4$, $ M_8$, $ M_1$, $ M_6$, $ \phi_1q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_9^2$, $ M_7M_9$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_9$, $ M_7^2$, $ M_10M_9$, $ M_4M_9$, $ M_2M_7$, $ M_10M_7$, $ M_4M_7$, $ \phi_1q_1^2$, $ M_2^2$, $ M_10M_2$, $ M_2M_4$, $ \phi_1q_2\tilde{q}_2$, $ M_10^2$, $ M_10M_4$, $ M_4^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8M_9$, $ M_1M_9$, $ M_7M_8$, $ M_6M_9$, $ M_1M_7$, $ M_2M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_6M_7$, $ M_10M_8$, $ M_4M_8$, $ M_1M_10$, $ M_1M_4$, $ M_2M_6$, $ M_10M_6$, $ M_4M_6$, $ M_8^2$ . -3 t^2.05 + t^2.23 + t^2.4 + 2*t^2.49 + t^2.99 + t^3.1 + t^3.25 + t^3.86 + t^4.01 + t^4.1 + 2*t^4.27 + t^4.36 + 2*t^4.45 + 2*t^4.54 + t^4.63 + 2*t^4.71 + t^4.78 + t^4.8 + 2*t^4.89 + 3*t^4.98 + t^5.04 + t^5.15 + t^5.21 + t^5.3 + t^5.33 + t^5.39 + 3*t^5.48 + t^5.59 + t^5.65 + 2*t^5.74 + t^5.98 - 3*t^6. + t^6.06 + t^6.09 + t^6.15 + t^6.2 + 2*t^6.24 + 2*t^6.32 + 2*t^6.35 + t^6.41 + 4*t^6.5 + 3*t^6.59 - t^6.61 + 2*t^6.67 + t^6.68 + 3*t^6.76 + t^6.82 + 4*t^6.85 - t^6.87 + 4*t^6.94 + 2*t^7. + 2*t^7.02 + t^7.09 + 2*t^7.11 + t^7.17 + 4*t^7.2 + 4*t^7.26 + t^7.29 + 2*t^7.35 + 2*t^7.37 + 2*t^7.44 + 3*t^7.46 + 3*t^7.52 + t^7.55 + t^7.61 + t^7.64 + 4*t^7.7 + t^7.76 + t^7.79 + t^7.81 + 2*t^7.88 + 4*t^7.96 - t^7.99 + 2*t^8.03 - 2*t^8.05 + t^8.08 + t^8.11 + t^8.14 + 2*t^8.2 - t^8.23 + t^8.25 + 2*t^8.29 + 2*t^8.37 + t^8.38 - 3*t^8.4 + t^8.43 + 5*t^8.46 - 7*t^8.49 + 4*t^8.55 + t^8.58 + t^8.6 + 2*t^8.63 + 2*t^8.64 - t^8.66 + t^8.69 + 2*t^8.72 + 5*t^8.73 - t^8.75 + t^8.79 + 4*t^8.81 + t^8.84 + t^8.87 + 4*t^8.9 - t^8.92 + t^8.96 + 2*t^8.98 + t^8.99 - t^4.37/y - t^6.42/y - t^6.6/y - t^6.77/y - t^6.86/y + (2*t^7.27)/y + t^7.45/y - t^7.48/y + (2*t^7.54)/y + t^7.63/y + (2*t^7.71)/y + (3*t^7.89)/y + (2*t^7.98)/y + t^8.04/y + (2*t^8.15)/y + t^8.21/y + t^8.3/y + (2*t^8.33)/y + t^8.39/y - t^8.47/y + (3*t^8.48)/y + t^8.5/y + (2*t^8.59)/y + (2*t^8.74)/y - t^8.82/y - t^8.83/y - t^4.37*y - t^6.42*y - t^6.6*y - t^6.77*y - t^6.86*y + 2*t^7.27*y + t^7.45*y - t^7.48*y + 2*t^7.54*y + t^7.63*y + 2*t^7.71*y + 3*t^7.89*y + 2*t^7.98*y + t^8.04*y + 2*t^8.15*y + t^8.21*y + t^8.3*y + 2*t^8.33*y + t^8.39*y - t^8.47*y + 3*t^8.48*y + t^8.5*y + 2*t^8.59*y + 2*t^8.74*y - t^8.82*y - t^8.83*y (g2^4*t^2.05)/g1^4 + g1^2*g2^6*t^2.23 + t^2.4/(g1^2*g2^2) + (2*g1*t^2.49)/g2 + g1*g2^15*t^2.99 + (g1^2*t^3.1)/g2^14 + g2^8*t^3.25 + (g1*t^3.86)/g2^5 + (g2^17*t^4.01)/g1 + (g2^8*t^4.1)/g1^8 + (2*g2^10*t^4.27)/g1^2 + g1*g2^11*t^4.36 + (g2^2*t^4.45)/g1^6 + g1^4*g2^12*t^4.45 + (2*g2^3*t^4.54)/g1^3 + g2^4*t^4.63 + 2*g1^3*g2^5*t^4.71 + (g2^26*t^4.78)/g1^2 + t^4.8/(g1^4*g2^4) + (2*t^4.89)/(g1*g2^3) + (3*g1^2*t^4.98)/g2^2 + (g2^19*t^5.04)/g1^3 + t^5.15/(g1^2*g2^10) + g1^3*g2^21*t^5.21 + (g2^12*t^5.3)/g1^4 + (g1^4*t^5.33)/g2^8 + (g2^13*t^5.39)/g1 + 3*g1^2*g2^14*t^5.48 + (g1^3*t^5.59)/g2^15 + (g2^6*t^5.65)/g1^2 + 2*g1*g2^7*t^5.74 + g1^2*g2^30*t^5.98 - 3*t^6. + (g2^21*t^6.06)/g1^5 + g1^3*g2*t^6.09 + (g2^12*t^6.15)/g1^12 + (g1^4*t^6.2)/g2^28 + 2*g1*g2^23*t^6.24 + (2*g2^14*t^6.32)/g1^6 + (2*g1^2*t^6.35)/g2^6 + (g2^15*t^6.41)/g1^3 + (g2^6*t^6.5)/g1^10 + 3*g2^16*t^6.5 + (2*g2^7*t^6.59)/g1^7 + g1^3*g2^17*t^6.59 - (g1*t^6.61)/g2^13 + (2*g2^8*t^6.67)/g1^4 + g1^6*g2^18*t^6.68 + (3*g2^9*t^6.76)/g1 + (g2^30*t^6.82)/g1^6 + t^6.85/g1^8 + 3*g1^2*g2^10*t^6.85 - t^6.87/g2^20 + (2*g2*t^6.94)/g1^5 + 2*g1^5*g2^11*t^6.94 + 2*g2^32*t^7. + (2*g2^2*t^7.02)/g1^2 + (g2^23*t^7.09)/g1^7 + 2*g1*g2^3*t^7.11 + (g2^24*t^7.17)/g1^4 + (2*t^7.2)/(g1^6*g2^6) + 2*g1^4*g2^4*t^7.2 + (4*g2^25*t^7.26)/g1 + t^7.29/(g1^3*g2^5) + (g2^16*t^7.35)/g1^8 + g1^2*g2^26*t^7.35 + (2*t^7.37)/g2^4 + (g2^17*t^7.44)/g1^5 + g1^5*g2^27*t^7.44 + (3*g1^3*t^7.46)/g2^3 + (3*g2^18*t^7.52)/g1^2 + (g1^6*t^7.55)/g2^2 + g1*g2^19*t^7.61 + t^7.64/(g1*g2^11) + (g2^10*t^7.7)/g1^6 + 3*g1^4*g2^20*t^7.7 + (g2^41*t^7.76)/g1 + (g2^11*t^7.79)/g1^3 + (g1^5*t^7.81)/g2^9 + 2*g2^12*t^7.88 + 4*g1^3*g2^13*t^7.96 - (g1*t^7.99)/g2^17 + (2*g2^34*t^8.03)/g1^2 - (2*g2^4*t^8.05)/g1^4 + (g1^4*t^8.08)/g2^16 + (g2^25*t^8.11)/g1^9 + (g2^5*t^8.14)/g1 + (g2^16*t^8.2)/g1^16 + g1^4*g2^36*t^8.2 - g1^2*g2^6*t^8.23 + t^8.25/g2^24 + (2*g2^27*t^8.29)/g1^3 - t^8.31/(g1^5*g2^3) + g1^5*g2^7*t^8.31 + (2*g2^18*t^8.37)/g1^10 + g2^28*t^8.38 - (3*t^8.4)/(g1^2*g2^2) + (g1^6*t^8.43)/g2^22 + (g2^19*t^8.46)/g1^7 + 4*g1^3*g2^29*t^8.46 - (7*g1*t^8.49)/g2 + (g2^10*t^8.55)/g1^14 + (3*g2^20*t^8.55)/g1^4 + g1^4*t^8.58 + (g1^2*t^8.6)/g2^30 + (2*g2^11*t^8.63)/g1^11 + (2*g2^21*t^8.64)/g1 - t^8.66/(g1^3*g2^9) + (g1^5*t^8.69)/g2^29 + (2*g2^12*t^8.72)/g1^8 + 5*g1^2*g2^22*t^8.73 - t^8.75/g2^8 + (g2^43*t^8.79)/g1^3 + (3*g2^13*t^8.81)/g1^5 + g1^5*g2^23*t^8.81 + (g1^3*t^8.84)/g2^7 + (g2^34*t^8.87)/g1^10 + (g2^4*t^8.9)/g1^12 + (2*g2^14*t^8.9)/g1^2 + g1^8*g2^24*t^8.9 - t^8.92/(g1^4*g2^16) + g1^3*g2^45*t^8.96 + (2*g2^5*t^8.98)/g1^9 + g1*g2^15*t^8.99 - t^4.37/(g2^4*y) - t^6.42/(g1^4*y) - (g1^2*g2^2*t^6.6)/y - t^6.77/(g1^2*g2^6*y) - (g1*t^6.86)/(g2^5*y) + (2*g2^10*t^7.27)/(g1^2*y) + (g2^2*t^7.45)/(g1^6*y) - (g1^2*t^7.48)/(g2^18*y) + (2*g2^3*t^7.54)/(g1^3*y) + (g2^4*t^7.63)/y + (2*g1^3*g2^5*t^7.71)/y + (3*t^7.89)/(g1*g2^3*y) + (2*g1^2*t^7.98)/(g2^2*y) + (g2^19*t^8.04)/(g1^3*y) + (2*t^8.15)/(g1^2*g2^10*y) + (g1^3*g2^21*t^8.21)/y + (g2^12*t^8.3)/(g1^4*y) + (2*g1^4*t^8.33)/(g2^8*y) + (g2^13*t^8.39)/(g1*y) - (g2^4*t^8.47)/(g1^8*y) + (3*g1^2*g2^14*t^8.48)/y + t^8.5/(g2^16*y) + (2*g1^3*t^8.59)/(g2^15*y) + (2*g1*g2^7*t^8.74)/y - t^8.82/(g1^6*g2^2*y) - (g1^4*g2^8*t^8.83)/y - (t^4.37*y)/g2^4 - (t^6.42*y)/g1^4 - g1^2*g2^2*t^6.6*y - (t^6.77*y)/(g1^2*g2^6) - (g1*t^6.86*y)/g2^5 + (2*g2^10*t^7.27*y)/g1^2 + (g2^2*t^7.45*y)/g1^6 - (g1^2*t^7.48*y)/g2^18 + (2*g2^3*t^7.54*y)/g1^3 + g2^4*t^7.63*y + 2*g1^3*g2^5*t^7.71*y + (3*t^7.89*y)/(g1*g2^3) + (2*g1^2*t^7.98*y)/g2^2 + (g2^19*t^8.04*y)/g1^3 + (2*t^8.15*y)/(g1^2*g2^10) + g1^3*g2^21*t^8.21*y + (g2^12*t^8.3*y)/g1^4 + (2*g1^4*t^8.33*y)/g2^8 + (g2^13*t^8.39*y)/g1 - (g2^4*t^8.47*y)/g1^8 + 3*g1^2*g2^14*t^8.48*y + (t^8.5*y)/g2^16 + (2*g1^3*t^8.59*y)/g2^15 + 2*g1*g2^7*t^8.74*y - (t^8.82*y)/(g1^6*g2^2) - g1^4*g2^8*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4852 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1^2$ + $ M_7\phi_1q_2^2$ + $ M_3M_8$ + $ M_9\phi_1\tilde{q}_1^2$ 0.6918 0.8766 0.7892 [X:[], M:[1.0397, 0.7938, 1.0012, 0.8323, 1.1677, 1.0833, 0.7479, 0.9988, 0.6708], q:[0.5634, 0.3969], qb:[0.4354, 0.7708], phi:[0.4584]] t^2.01 + t^2.24 + t^2.38 + t^2.5 + t^3. + t^3.12 + t^3.25 + t^3.5 + t^3.87 + t^4. + t^4.02 + 2*t^4.26 + t^4.37 + t^4.39 + t^4.49 + t^4.51 + t^4.62 + t^4.74 + 2*t^4.76 + t^4.88 + t^4.99 + t^5.01 + t^5.13 + t^5.24 + t^5.26 + t^5.36 + t^5.38 + 2*t^5.49 + t^5.52 + t^5.63 + 2*t^5.75 + t^5.88 + t^5.99 - 2*t^6. - t^4.38/y - t^4.38*y detail