Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55354 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ | 0.6918 | 0.8766 | 0.7892 | [X:[], M:[1.1677, 1.0397, 0.8323, 0.7938, 1.0833, 0.7479, 0.6708], q:[0.3969, 0.4354], qb:[0.5634, 0.7708], phi:[0.4584]] | [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [0, 4], [-2, 18], [4, -28]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_4$, $ M_3$, $ q_2\tilde{q}_1$, $ M_2$, $ M_5$, $ M_1$, $ \phi_1q_1q_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_7$, $ M_6^2$, $ M_3M_7$, $ M_4M_6$, $ M_3M_6$, $ M_4^2$, $ \phi_1\tilde{q}_1^2$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ \phi_1q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_1$, $ M_2M_7$, $ M_6q_2\tilde{q}_1$, $ M_5M_7$, $ M_2M_6$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_3q_2\tilde{q}_1$, $ M_1M_7$, $ M_4M_5$, $ M_3M_5$, $ M_1M_6$, $ M_1M_4$, $ M_7\phi_1q_1q_2$, $ q_2^2\tilde{q}_1^2$ | . | -2 | t^2.01 + t^2.24 + t^2.38 + t^2.5 + t^3. + t^3.12 + t^3.25 + t^3.5 + t^3.87 + t^4. + t^4.02 + 2*t^4.26 + t^4.37 + t^4.39 + t^4.49 + t^4.51 + t^4.62 + t^4.74 + 2*t^4.76 + t^4.88 + t^4.99 + t^5.01 + t^5.13 + t^5.24 + t^5.26 + t^5.36 + t^5.38 + 2*t^5.49 + t^5.52 + t^5.63 + 2*t^5.75 + t^5.88 + t^5.99 - 2*t^6. + t^6.01 + t^6.04 + t^6.12 + t^6.24 + 2*t^6.25 + 2*t^6.27 + t^6.37 + t^6.38 + t^6.41 + 3*t^6.5 + t^6.52 + t^6.62 + 2*t^6.64 + t^6.73 + 2*t^6.75 + 2*t^6.77 + 2*t^6.87 - t^6.88 + t^6.89 + t^6.98 + 2*t^7. + t^7.01 + t^7.02 + t^7.12 + 3*t^7.14 + 3*t^7.25 + t^7.27 + t^7.37 + t^7.38 + t^7.39 + t^7.48 + 3*t^7.51 + t^7.53 + t^7.61 + t^7.62 + t^7.64 + 2*t^7.74 + t^7.75 + 2*t^7.76 + 2*t^7.87 + t^7.9 + 2*t^7.99 - t^8. + t^8.01 + t^8.03 + t^8.05 + t^8.13 - t^8.24 + t^8.25 + 3*t^8.26 + 2*t^8.28 + t^8.36 + t^8.37 - 2*t^8.38 + t^8.4 + t^8.42 + t^8.48 + 3*t^8.49 - 3*t^8.5 + 3*t^8.51 + t^8.53 + t^8.62 + 2*t^8.63 + 2*t^8.65 + 4*t^8.74 - t^8.75 + t^8.76 + 2*t^8.77 + t^8.78 + t^8.79 + t^8.86 + 2*t^8.88 - t^8.89 + t^8.9 + t^8.97 + t^8.99 - t^4.38/y - t^6.39/y - t^6.62/y - t^6.76/y + (2*t^7.26)/y + t^7.39/y - t^7.49/y + t^7.51/y + t^7.62/y + t^7.74/y + t^7.88/y + t^7.99/y + t^8.01/y + (2*t^8.13)/y + t^8.24/y + t^8.26/y + (2*t^8.36)/y + t^8.38/y - t^8.4/y + (2*t^8.49)/y + t^8.5/y + t^8.52/y + t^8.62/y + (2*t^8.75)/y - t^8.77/y - t^8.86/y + (2*t^8.88)/y - t^4.38*y - t^6.39*y - t^6.62*y - t^6.76*y + 2*t^7.26*y + t^7.39*y - t^7.49*y + t^7.51*y + t^7.62*y + t^7.74*y + t^7.88*y + t^7.99*y + t^8.01*y + 2*t^8.13*y + t^8.24*y + t^8.26*y + 2*t^8.36*y + t^8.38*y - t^8.4*y + 2*t^8.49*y + t^8.5*y + t^8.52*y + t^8.62*y + 2*t^8.75*y - t^8.77*y - t^8.86*y + 2*t^8.88*y | (g1^4*t^2.01)/g2^28 + (g2^18*t^2.24)/g1^2 + (g1^2*t^2.38)/g2^16 + (g2^7*t^2.5)/g1 + (g2^15*t^3.)/g1 + (g2^8*t^3.12)/g1^2 + g2^4*t^3.25 + (g1*t^3.5)/g2^7 + (g2^5*t^3.87)/g1 + g1*g2*t^4. + (g1^8*t^4.02)/g2^56 + (2*g1^2*t^4.26)/g2^10 + (g2^13*t^4.37)/g1 + (g1^6*t^4.39)/g2^44 + (g2^36*t^4.49)/g1^4 + (g1^3*t^4.51)/g2^21 + g2^2*t^4.62 + (g2^25*t^4.74)/g1^3 + (g1^4*t^4.76)/g2^32 + (g1^2*t^4.76)/g2^2 + (g1*t^4.88)/g2^9 + (g2^14*t^4.99)/g1^2 + (g1^3*t^5.01)/g2^13 + (g1^2*t^5.13)/g2^20 + (g2^33*t^5.24)/g1^3 + (g1^4*t^5.26)/g2^24 + (g2^26*t^5.36)/g1^4 + (g1*t^5.38)/g2 + (2*g2^22*t^5.49)/g1^2 + (g1^5*t^5.52)/g2^35 + (g1^2*t^5.63)/g2^12 + (2*g2^11*t^5.75)/g1 + (g1^3*t^5.88)/g2^23 + (g2^30*t^5.99)/g1^2 - 2*t^6. + (g1^5*t^6.01)/g2^27 + (g1^12*t^6.04)/g2^84 + (g2^23*t^6.12)/g1^3 + (g2^16*t^6.24)/g1^4 + (2*g2^19*t^6.25)/g1 + (2*g1^6*t^6.27)/g2^38 + (g2^12*t^6.37)/g1^2 + (g1^3*t^6.38)/g2^15 + (g1^10*t^6.41)/g2^72 + 3*g2^8*t^6.5 + (g1^7*t^6.52)/g2^49 + (g2^31*t^6.62)/g1^3 + (2*g1^4*t^6.64)/g2^26 + (g2^54*t^6.73)/g1^6 + (2*g1*t^6.75)/g2^3 + (g1^8*t^6.77)/g2^60 + (g1^6*t^6.77)/g2^30 + (2*g2^20*t^6.87)/g1^2 - t^6.88/g2^10 + (g1^5*t^6.89)/g2^37 + (g2^43*t^6.98)/g1^5 + 2*g2^16*t^7. + (g1^2*t^7.01)/g2^14 + (g1^7*t^7.02)/g2^41 + (g2^9*t^7.12)/g1 + (2*g1^6*t^7.14)/g2^48 + (g1^4*t^7.14)/g2^18 + 3*g1*g2^5*t^7.25 + (g1^8*t^7.27)/g2^52 + (g2^28*t^7.37)/g1^2 + t^7.38/g2^2 + (g1^5*t^7.39)/g2^29 + (g2^51*t^7.48)/g1^5 + (3*g1^2*t^7.51)/g2^6 + (g1^9*t^7.53)/g2^63 + (g2^44*t^7.61)/g1^6 + (g2^17*t^7.62)/g1 + (g1^6*t^7.64)/g2^40 + (2*g2^40*t^7.74)/g1^4 + g1*g2^13*t^7.75 + (2*g1^3*t^7.76)/g2^17 + 2*g2^6*t^7.87 + (g1^7*t^7.9)/g2^51 + (2*g2^29*t^7.99)/g1^3 - t^8./(g1*g2) - (g1^4*t^8.01)/g2^28 + 2*g1^2*g2^2*t^8.01 + (g1^9*t^8.03)/g2^55 + (g1^16*t^8.05)/g2^112 + (g1*t^8.13)/g2^5 - (2*g2^18*t^8.24)/g1^2 + (g2^48*t^8.24)/g1^4 + t^8.25/g2^12 + (3*g1^3*t^8.26)/g2^9 + (2*g1^10*t^8.28)/g2^66 + (g2^41*t^8.36)/g1^5 + g2^14*t^8.37 - (2*g1^2*t^8.38)/g2^16 + (g1^7*t^8.4)/g2^43 + (g1^14*t^8.42)/g2^100 + (g2^34*t^8.48)/g1^6 + (3*g2^37*t^8.49)/g1^3 - (3*g2^7*t^8.5)/g1 + (3*g1^4*t^8.51)/g2^20 + (g1^11*t^8.53)/g2^77 + t^8.62/g1^2 + 2*g1*g2^3*t^8.63 + (2*g1^8*t^8.65)/g2^54 + (4*g2^26*t^8.74)/g1^2 - t^8.75/g2^4 + (g1^3*t^8.76)/g2 + (2*g1^5*t^8.77)/g2^31 + (g1^10*t^8.78)/g2^58 + (g1^12*t^8.79)/g2^88 + (g2^49*t^8.86)/g1^5 + (2*g1^2*t^8.88)/g2^8 - (g1^4*t^8.89)/g2^38 + (g1^9*t^8.9)/g2^65 + (g2^72*t^8.97)/g1^8 + (g2^45*t^8.99)/g1^3 - t^4.38/(g2^2*y) - (g1^4*t^6.39)/(g2^30*y) - (g2^16*t^6.62)/(g1^2*y) - (g1^2*t^6.76)/(g2^18*y) + (2*g1^2*t^7.26)/(g2^10*y) + (g1^6*t^7.39)/(g2^44*y) - (g2^6*t^7.49)/(g1^2*y) + (g1^3*t^7.51)/(g2^21*y) + (g2^2*t^7.62)/y + (g2^25*t^7.74)/(g1^3*y) + (g1*t^7.88)/(g2^9*y) + (g2^14*t^7.99)/(g1^2*y) + (g1^3*t^8.01)/(g2^13*y) + (2*g1^2*t^8.13)/(g2^20*y) + (g2^33*t^8.24)/(g1^3*y) + (g1^4*t^8.26)/(g2^24*y) + (2*g2^26*t^8.36)/(g1^4*y) + (g1*t^8.38)/(g2*y) - (g1^8*t^8.4)/(g2^58*y) + (2*g2^22*t^8.49)/(g1^2*y) + t^8.5/(g2^8*y) + (g1^5*t^8.52)/(g2^35*y) + (g2^15*t^8.62)/(g1^3*y) + (2*g2^11*t^8.75)/(g1*y) - (g1^6*t^8.77)/(g2^46*y) - (g2^34*t^8.86)/(g1^4*y) + (2*g1^3*t^8.88)/(g2^23*y) - (t^4.38*y)/g2^2 - (g1^4*t^6.39*y)/g2^30 - (g2^16*t^6.62*y)/g1^2 - (g1^2*t^6.76*y)/g2^18 + (2*g1^2*t^7.26*y)/g2^10 + (g1^6*t^7.39*y)/g2^44 - (g2^6*t^7.49*y)/g1^2 + (g1^3*t^7.51*y)/g2^21 + g2^2*t^7.62*y + (g2^25*t^7.74*y)/g1^3 + (g1*t^7.88*y)/g2^9 + (g2^14*t^7.99*y)/g1^2 + (g1^3*t^8.01*y)/g2^13 + (2*g1^2*t^8.13*y)/g2^20 + (g2^33*t^8.24*y)/g1^3 + (g1^4*t^8.26*y)/g2^24 + (2*g2^26*t^8.36*y)/g1^4 + (g1*t^8.38*y)/g2 - (g1^8*t^8.4*y)/g2^58 + (2*g2^22*t^8.49*y)/g1^2 + (t^8.5*y)/g2^8 + (g1^5*t^8.52*y)/g2^35 + (g2^15*t^8.62*y)/g1^3 + (2*g2^11*t^8.75*y)/g1 - (g1^6*t^8.77*y)/g2^46 - (g2^34*t^8.86*y)/g1^4 + (2*g1^3*t^8.88*y)/g2^23 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
56980 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ + $ M_1M_7$ | 0.6803 | 0.8608 | 0.7903 | [X:[], M:[1.2, 0.9725, 0.8, 0.8575, 1.085, 0.685, 0.8], q:[0.4287, 0.3713], qb:[0.5988, 0.7713], phi:[0.4575]] | t^2.06 + 2*t^2.4 + t^2.57 + t^2.91 + t^2.92 + t^3.26 + t^3.6 + t^3.77 + 2*t^4.11 + t^4.28 + 3*t^4.46 + t^4.63 + 3*t^4.8 + 5*t^4.97 + t^5.14 + 3*t^5.31 + t^5.32 + t^5.48 + 3*t^5.66 + t^5.82 + 3*t^5.83 - t^6. - t^4.37/y - t^4.37*y | detail | |
56981 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ + $ M_1M_8$ | 0.7063 | 0.9014 | 0.7836 | [X:[], M:[1.1707, 1.0334, 0.8293, 0.7998, 1.0834, 0.7419, 0.6829, 0.8293], q:[0.3999, 0.4294], qb:[0.5667, 0.7709], phi:[0.4583]] | t^2.05 + t^2.23 + t^2.4 + 2*t^2.49 + t^2.99 + t^3.1 + t^3.25 + t^3.86 + t^4.01 + t^4.1 + 2*t^4.27 + t^4.36 + 2*t^4.45 + 2*t^4.54 + t^4.63 + 2*t^4.71 + t^4.78 + t^4.8 + 2*t^4.89 + 3*t^4.98 + t^5.04 + t^5.15 + t^5.21 + t^5.3 + t^5.33 + t^5.39 + 3*t^5.48 + t^5.59 + t^5.65 + 2*t^5.74 + t^5.98 - 3*t^6. - t^4.37/y - t^4.37*y | detail | |
56975 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ + $ M_4M_7$ + $ M_6X_1$ | 0.5942 | 0.7444 | 0.7983 | [X:[1.4559], M:[1.2544, 0.9117, 0.7456, 0.9823, 1.053, 0.5441, 1.0177], q:[0.4912, 0.2544], qb:[0.5971, 0.7632], phi:[0.4735]] | t^2.24 + t^2.55 + t^2.74 + t^2.95 + t^3.05 + t^3.16 + t^3.66 + t^3.76 + t^3.98 + t^4.08 + t^4.37 + t^4.47 + t^4.69 + t^4.79 + t^5. + t^5.11 + t^5.18 + t^5.29 + t^5.4 + t^5.47 + t^5.5 + t^5.61 + t^5.71 + t^5.79 + 2*t^5.89 - t^6. - t^4.42/y - t^4.42*y | detail | |
56978 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ + $ M_7q_2\tilde{q}_1$ | 0.647 | 0.8101 | 0.7986 | [X:[], M:[1.2057, 0.8014, 0.7943, 0.8157, 1.1914, 0.78, 0.8229], q:[0.4079, 0.3864], qb:[0.7907, 0.7979], phi:[0.4043]] | t^2.34 + t^2.38 + t^2.4 + t^2.45 + t^2.47 + t^3.53 + t^3.57 + t^3.6 + t^3.62 + t^4.68 + t^4.72 + 2*t^4.74 + 2*t^4.77 + t^4.79 + 3*t^4.81 + t^4.83 + t^4.85 + t^4.87 + t^4.89 + t^4.92 + t^4.94 + t^5.87 + 2*t^5.91 + t^5.94 + 3*t^5.96 + 2*t^5.98 - t^6. - t^4.21/y - t^4.21*y | detail | |
56974 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_2^2$ + $ M_7^2$ + $ M_6X_1$ | 0.6027 | 0.7515 | 0.8019 | [X:[1.4215], M:[1.25, 0.8822, 0.75, 0.9607, 1.0785, 0.5785, 1.0], q:[0.4804, 0.2696], qb:[0.6374, 0.7696], phi:[0.4607]] | t^2.25 + t^2.65 + t^2.72 + t^2.88 + t^3. + t^3.24 + t^3.63 + t^3.75 + t^4.1 + t^4.22 + t^4.26 + t^4.5 + t^4.74 + t^4.97 + t^5.13 + t^5.21 + t^5.25 + t^5.29 + t^5.44 + t^5.49 + t^5.6 + t^5.65 + t^5.72 + t^5.76 + 2*t^5.88 + t^5.96 - t^6. - t^4.38/y - t^4.38*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47003 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1^2$ + $ M_6\phi_1q_1^2$ | 0.671 | 0.8353 | 0.8033 | [X:[], M:[1.1683, 1.0384, 0.8317, 0.795, 1.0833, 0.7466], q:[0.3975, 0.4341], qb:[0.5641, 0.7708], phi:[0.4584]] | t^2.24 + t^2.39 + t^2.49 + t^2.99 + t^3.12 + t^3.25 + t^3.51 + t^3.87 + t^3.98 + t^4. + t^4.26 + t^4.37 + t^4.48 + t^4.62 + t^4.73 + t^4.76 + t^4.77 + t^4.88 + t^4.99 + t^5.23 + t^5.35 + t^5.38 + 2*t^5.49 + t^5.64 + 2*t^5.74 + t^5.99 - 2*t^6. - t^4.38/y - t^4.38*y | detail |