Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56716 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.7372 0.9444 0.7806 [M:[0.9725, 0.9725, 1.1233, 0.8767, 0.685, 0.7808, 0.7808, 0.685], q:[0.5891, 0.4383], qb:[0.4383, 0.7808], phi:[0.4383]] [M:[[1, -7], [-1, -11], [0, 4], [0, -4], [2, 10], [-1, -1], [1, 3], [-2, 2]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{8}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{5}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$ ${}M_{5}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ -3 2*t^2.055 + 2*t^2.342 + 2*t^2.63 + 2*t^2.918 + t^3.945 + 4*t^4.11 + 6*t^4.397 + 7*t^4.685 + t^4.85 + 8*t^4.973 + 7*t^5.26 + 2*t^5.548 + 3*t^5.835 - 3*t^6. + 6*t^6.165 + 10*t^6.452 + t^6.575 + 16*t^6.74 + 2*t^6.905 + 20*t^7.027 + 2*t^7.192 + 17*t^7.315 + t^7.48 + 14*t^7.603 - 2*t^7.767 + 14*t^7.89 - 10*t^8.055 + 8*t^8.178 + 8*t^8.22 - 12*t^8.342 + 3*t^8.465 + 14*t^8.507 - 9*t^8.63 + 4*t^8.753 + 24*t^8.795 - 10*t^8.918 + 4*t^8.96 - t^4.315/y - (2*t^6.37)/y - (2*t^6.658)/y - t^6.945/y + t^7.11/y - (2*t^7.233)/y + (6*t^7.397)/y + (6*t^7.685)/y + (10*t^7.973)/y + (7*t^8.26)/y - (3*t^8.425)/y + (4*t^8.548)/y - (4*t^8.712)/y + t^8.835/y - t^4.315*y - 2*t^6.37*y - 2*t^6.658*y - t^6.945*y + t^7.11*y - 2*t^7.233*y + 6*t^7.397*y + 6*t^7.685*y + 10*t^7.973*y + 7*t^8.26*y - 3*t^8.425*y + 4*t^8.548*y - 4*t^8.712*y + t^8.835*y (g2^2*t^2.055)/g1^2 + g1^2*g2^10*t^2.055 + t^2.342/(g1*g2) + g1*g2^3*t^2.342 + (2*t^2.63)/g2^4 + t^2.918/(g1*g2^11) + (g1*t^2.918)/g2^7 + t^3.945/g2^6 + (g2^4*t^4.11)/g1^4 + 2*g2^12*t^4.11 + g1^4*g2^20*t^4.11 + (g2*t^4.397)/g1^3 + (2*g2^5*t^4.397)/g1 + 2*g1*g2^9*t^4.397 + g1^3*g2^13*t^4.397 + (3*t^4.685)/(g1^2*g2^2) + g2^2*t^4.685 + 3*g1^2*g2^6*t^4.685 + g2^20*t^4.85 + t^4.973/(g1^3*g2^9) + (3*t^4.973)/(g1*g2^5) + (3*g1*t^4.973)/g2 + g1^3*g2^3*t^4.973 + t^5.26/(g1^2*g2^12) + (5*t^5.26)/g2^8 + (g1^2*t^5.26)/g2^4 + t^5.548/(g1*g2^15) + (g1*t^5.548)/g2^11 + t^5.835/(g1^2*g2^22) + t^5.835/g2^18 + (g1^2*t^5.835)/g2^14 - 3*t^6. + (g2^6*t^6.165)/g1^6 + (2*g2^14*t^6.165)/g1^2 + 2*g1^2*g2^22*t^6.165 + g1^6*g2^30*t^6.165 + (g2^3*t^6.452)/g1^5 + (2*g2^7*t^6.452)/g1^3 + (2*g2^11*t^6.452)/g1 + 2*g1*g2^15*t^6.452 + 2*g1^3*g2^19*t^6.452 + g1^5*g2^23*t^6.452 + t^6.575/g2^10 + (3*t^6.74)/g1^4 + (2*g2^4*t^6.74)/g1^2 + 6*g2^8*t^6.74 + 2*g1^2*g2^12*t^6.74 + 3*g1^4*g2^16*t^6.74 + (g2^22*t^6.905)/g1^2 + g1^2*g2^30*t^6.905 + t^7.027/(g1^5*g2^7) + (4*t^7.027)/(g1^3*g2^3) + (5*g2*t^7.027)/g1 + 5*g1*g2^5*t^7.027 + 4*g1^3*g2^9*t^7.027 + g1^5*g2^13*t^7.027 + (g2^19*t^7.192)/g1 + g1*g2^23*t^7.192 + t^7.315/(g1^4*g2^10) + (6*t^7.315)/(g1^2*g2^6) + (3*t^7.315)/g2^2 + 6*g1^2*g2^2*t^7.315 + g1^4*g2^6*t^7.315 + g2^16*t^7.48 + (2*t^7.603)/(g1^3*g2^13) + (5*t^7.603)/(g1*g2^9) + (5*g1*t^7.603)/g2^5 + (2*g1^3*t^7.603)/g2 - (g2^9*t^7.767)/g1 - g1*g2^13*t^7.767 + t^7.89/(g1^4*g2^20) + (2*t^7.89)/(g1^2*g2^16) + (8*t^7.89)/g2^12 + (2*g1^2*t^7.89)/g2^8 + (g1^4*t^7.89)/g2^4 - (4*g2^2*t^8.055)/g1^2 - 2*g2^6*t^8.055 - 4*g1^2*g2^10*t^8.055 + t^8.178/(g1^3*g2^23) + (3*t^8.178)/(g1*g2^19) + (3*g1*t^8.178)/g2^15 + (g1^3*t^8.178)/g2^11 + (g2^8*t^8.22)/g1^8 + (2*g2^16*t^8.22)/g1^4 + 2*g2^24*t^8.22 + 2*g1^4*g2^32*t^8.22 + g1^8*g2^40*t^8.22 - t^8.342/(g1^3*g2^5) - (5*t^8.342)/(g1*g2) - 5*g1*g2^3*t^8.342 - g1^3*g2^7*t^8.342 + t^8.465/(g1^2*g2^26) + t^8.465/g2^22 + (g1^2*t^8.465)/g2^18 + (g2^5*t^8.507)/g1^7 + (2*g2^9*t^8.507)/g1^5 + (2*g2^13*t^8.507)/g1^3 + (2*g2^17*t^8.507)/g1 + 2*g1*g2^21*t^8.507 + 2*g1^3*g2^25*t^8.507 + 2*g1^5*g2^29*t^8.507 + g1^7*g2^33*t^8.507 - g1^2*t^8.63 - t^8.63/(g1^2*g2^8) - (7*t^8.63)/g2^4 + t^8.753/(g1^3*g2^33) + t^8.753/(g1*g2^29) + (g1*t^8.753)/g2^25 + (g1^3*t^8.753)/g2^21 + (3*g2^2*t^8.795)/g1^6 + (2*g2^6*t^8.795)/g1^4 + (6*g2^10*t^8.795)/g1^2 + 2*g2^14*t^8.795 + 6*g1^2*g2^18*t^8.795 + 2*g1^4*g2^22*t^8.795 + 3*g1^6*g2^26*t^8.795 - t^8.918/(g1^3*g2^15) - (4*t^8.918)/(g1*g2^11) - (4*g1*t^8.918)/g2^7 - (g1^3*t^8.918)/g2^3 + (g2^24*t^8.96)/g1^4 + 2*g2^32*t^8.96 + g1^4*g2^40*t^8.96 - t^4.315/(g2^2*y) - t^6.37/(g1^2*y) - (g1^2*g2^8*t^6.37)/y - t^6.658/(g1*g2^3*y) - (g1*g2*t^6.658)/y - t^6.945/(g2^6*y) + (g2^12*t^7.11)/y - t^7.233/(g1*g2^13*y) - (g1*t^7.233)/(g2^9*y) + (g2*t^7.397)/(g1^3*y) + (2*g2^5*t^7.397)/(g1*y) + (2*g1*g2^9*t^7.397)/y + (g1^3*g2^13*t^7.397)/y + (2*t^7.685)/(g1^2*g2^2*y) + (2*g2^2*t^7.685)/y + (2*g1^2*g2^6*t^7.685)/y + t^7.973/(g1^3*g2^9*y) + (4*t^7.973)/(g1*g2^5*y) + (4*g1*t^7.973)/(g2*y) + (g1^3*g2^3*t^7.973)/y + (2*t^8.26)/(g1^2*g2^12*y) + (3*t^8.26)/(g2^8*y) + (2*g1^2*t^8.26)/(g2^4*y) - (g2^2*t^8.425)/(g1^4*y) - (g2^10*t^8.425)/y - (g1^4*g2^18*t^8.425)/y + (2*t^8.548)/(g1*g2^15*y) + (2*g1*t^8.548)/(g2^11*y) - t^8.712/(g1^3*g2*y) - (g2^3*t^8.712)/(g1*y) - (g1*g2^7*t^8.712)/y - (g1^3*g2^11*t^8.712)/y + t^8.835/(g2^18*y) - (t^4.315*y)/g2^2 - (t^6.37*y)/g1^2 - g1^2*g2^8*t^6.37*y - (t^6.658*y)/(g1*g2^3) - g1*g2*t^6.658*y - (t^6.945*y)/g2^6 + g2^12*t^7.11*y - (t^7.233*y)/(g1*g2^13) - (g1*t^7.233*y)/g2^9 + (g2*t^7.397*y)/g1^3 + (2*g2^5*t^7.397*y)/g1 + 2*g1*g2^9*t^7.397*y + g1^3*g2^13*t^7.397*y + (2*t^7.685*y)/(g1^2*g2^2) + 2*g2^2*t^7.685*y + 2*g1^2*g2^6*t^7.685*y + (t^7.973*y)/(g1^3*g2^9) + (4*t^7.973*y)/(g1*g2^5) + (4*g1*t^7.973*y)/g2 + g1^3*g2^3*t^7.973*y + (2*t^8.26*y)/(g1^2*g2^12) + (3*t^8.26*y)/g2^8 + (2*g1^2*t^8.26*y)/g2^4 - (g2^2*t^8.425*y)/g1^4 - g2^10*t^8.425*y - g1^4*g2^18*t^8.425*y + (2*t^8.548*y)/(g1*g2^15) + (2*g1*t^8.548*y)/g2^11 - (t^8.712*y)/(g1^3*g2) - (g2^3*t^8.712*y)/g1 - g1*g2^7*t^8.712*y - g1^3*g2^11*t^8.712*y + (t^8.835*y)/g2^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55070 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ 0.7166 0.9045 0.7922 [M:[0.9659, 0.9725, 1.1248, 0.8752, 0.6806, 0.7845, 0.7779], q:[0.5932, 0.4409], qb:[0.4343, 0.7812], phi:[0.4376]] t^2.042 + t^2.334 + t^2.353 + 2*t^2.626 + t^2.898 + t^2.918 + t^3.919 + t^3.938 + t^4.083 + t^4.123 + t^4.375 + 2*t^4.395 + t^4.415 + 3*t^4.667 + t^4.687 + t^4.707 + t^4.872 + t^4.94 + 3*t^4.959 + 2*t^4.979 + t^5.231 + 5*t^5.251 + t^5.271 + t^5.523 + t^5.543 + t^5.796 + t^5.815 + t^5.835 + t^5.96 - 3*t^6. - t^4.313/y - t^4.313*y detail