Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56716 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7q_2\tilde{q}_2$ + $ M_8\phi_1\tilde{q}_1^2$ | 0.7372 | 0.9444 | 0.7806 | [X:[], M:[0.9725, 0.9725, 1.1233, 0.8767, 0.685, 0.7808, 0.7808, 0.685], q:[0.5891, 0.4383], qb:[0.4383, 0.7808], phi:[0.4383]] | [X:[], M:[[1, -7], [-1, -11], [0, 4], [0, -4], [2, 10], [-1, -1], [1, 3], [-2, 2]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_5$, $ M_6$, $ M_7$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_1$, $ \phi_1q_2\tilde{q}_1$, $ M_8^2$, $ M_5M_8$, $ q_1\tilde{q}_2$, $ M_5^2$, $ M_6M_8$, $ M_7M_8$, $ \phi_1q_1q_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_5M_7$, $ M_6^2$, $ M_4M_8$, $ M_8\phi_1^2$, $ M_6M_7$, $ M_4M_5$, $ M_7^2$, $ M_5\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_8$, $ M_4M_6$, $ M_1M_8$, $ M_6\phi_1^2$, $ M_2M_5$, $ M_4M_7$, $ M_7\phi_1^2$, $ M_1M_5$, $ M_2M_6$, $ M_4^2$, $ M_1M_6$, $ M_2M_7$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_7$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ | $M_5\phi_1q_2\tilde{q}_1$, $ M_8\phi_1q_2\tilde{q}_1$ | -3 | 2*t^2.05 + 2*t^2.34 + 2*t^2.63 + 2*t^2.92 + t^3.95 + 4*t^4.11 + 6*t^4.4 + 7*t^4.68 + t^4.85 + 8*t^4.97 + 7*t^5.26 + 2*t^5.55 + 3*t^5.84 - 3*t^6. + 6*t^6.16 + 10*t^6.45 + t^6.58 + 16*t^6.74 + 2*t^6.9 + 20*t^7.03 + 2*t^7.19 + 17*t^7.32 + t^7.48 + 14*t^7.6 - 2*t^7.77 + 14*t^7.89 - 10*t^8.05 + 8*t^8.18 + 8*t^8.22 - 12*t^8.34 + 3*t^8.47 + 14*t^8.51 - 9*t^8.63 + 4*t^8.75 + 24*t^8.79 - 10*t^8.92 + 4*t^8.96 - t^4.32/y - (2*t^6.37)/y - (2*t^6.66)/y - t^6.95/y + t^7.11/y - (2*t^7.23)/y + (6*t^7.4)/y + (6*t^7.68)/y + (10*t^7.97)/y + (7*t^8.26)/y - (3*t^8.42)/y + (4*t^8.55)/y - (4*t^8.71)/y + t^8.84/y - t^4.32*y - 2*t^6.37*y - 2*t^6.66*y - t^6.95*y + t^7.11*y - 2*t^7.23*y + 6*t^7.4*y + 6*t^7.68*y + 10*t^7.97*y + 7*t^8.26*y - 3*t^8.42*y + 4*t^8.55*y - 4*t^8.71*y + t^8.84*y | (g2^2*t^2.05)/g1^2 + g1^2*g2^10*t^2.05 + t^2.34/(g1*g2) + g1*g2^3*t^2.34 + (2*t^2.63)/g2^4 + t^2.92/(g1*g2^11) + (g1*t^2.92)/g2^7 + t^3.95/g2^6 + (g2^4*t^4.11)/g1^4 + 2*g2^12*t^4.11 + g1^4*g2^20*t^4.11 + (g2*t^4.4)/g1^3 + (2*g2^5*t^4.4)/g1 + 2*g1*g2^9*t^4.4 + g1^3*g2^13*t^4.4 + (3*t^4.68)/(g1^2*g2^2) + g2^2*t^4.68 + 3*g1^2*g2^6*t^4.68 + g2^20*t^4.85 + t^4.97/(g1^3*g2^9) + (3*t^4.97)/(g1*g2^5) + (3*g1*t^4.97)/g2 + g1^3*g2^3*t^4.97 + t^5.26/(g1^2*g2^12) + (5*t^5.26)/g2^8 + (g1^2*t^5.26)/g2^4 + t^5.55/(g1*g2^15) + (g1*t^5.55)/g2^11 + t^5.84/(g1^2*g2^22) + t^5.84/g2^18 + (g1^2*t^5.84)/g2^14 - 3*t^6. + (g2^6*t^6.16)/g1^6 + (2*g2^14*t^6.16)/g1^2 + 2*g1^2*g2^22*t^6.16 + g1^6*g2^30*t^6.16 + (g2^3*t^6.45)/g1^5 + (2*g2^7*t^6.45)/g1^3 + (2*g2^11*t^6.45)/g1 + 2*g1*g2^15*t^6.45 + 2*g1^3*g2^19*t^6.45 + g1^5*g2^23*t^6.45 + t^6.58/g2^10 + (3*t^6.74)/g1^4 + (2*g2^4*t^6.74)/g1^2 + 6*g2^8*t^6.74 + 2*g1^2*g2^12*t^6.74 + 3*g1^4*g2^16*t^6.74 + (g2^22*t^6.9)/g1^2 + g1^2*g2^30*t^6.9 + t^7.03/(g1^5*g2^7) + (4*t^7.03)/(g1^3*g2^3) + (5*g2*t^7.03)/g1 + 5*g1*g2^5*t^7.03 + 4*g1^3*g2^9*t^7.03 + g1^5*g2^13*t^7.03 + (g2^19*t^7.19)/g1 + g1*g2^23*t^7.19 + t^7.32/(g1^4*g2^10) + (6*t^7.32)/(g1^2*g2^6) + (3*t^7.32)/g2^2 + 6*g1^2*g2^2*t^7.32 + g1^4*g2^6*t^7.32 + g2^16*t^7.48 + (2*t^7.6)/(g1^3*g2^13) + (5*t^7.6)/(g1*g2^9) + (5*g1*t^7.6)/g2^5 + (2*g1^3*t^7.6)/g2 - (g2^9*t^7.77)/g1 - g1*g2^13*t^7.77 + t^7.89/(g1^4*g2^20) + (2*t^7.89)/(g1^2*g2^16) + (8*t^7.89)/g2^12 + (2*g1^2*t^7.89)/g2^8 + (g1^4*t^7.89)/g2^4 - (4*g2^2*t^8.05)/g1^2 - 2*g2^6*t^8.05 - 4*g1^2*g2^10*t^8.05 + t^8.18/(g1^3*g2^23) + (3*t^8.18)/(g1*g2^19) + (3*g1*t^8.18)/g2^15 + (g1^3*t^8.18)/g2^11 + (g2^8*t^8.22)/g1^8 + (2*g2^16*t^8.22)/g1^4 + 2*g2^24*t^8.22 + 2*g1^4*g2^32*t^8.22 + g1^8*g2^40*t^8.22 - t^8.34/(g1^3*g2^5) - (5*t^8.34)/(g1*g2) - 5*g1*g2^3*t^8.34 - g1^3*g2^7*t^8.34 + t^8.47/(g1^2*g2^26) + t^8.47/g2^22 + (g1^2*t^8.47)/g2^18 + (g2^5*t^8.51)/g1^7 + (2*g2^9*t^8.51)/g1^5 + (2*g2^13*t^8.51)/g1^3 + (2*g2^17*t^8.51)/g1 + 2*g1*g2^21*t^8.51 + 2*g1^3*g2^25*t^8.51 + 2*g1^5*g2^29*t^8.51 + g1^7*g2^33*t^8.51 - g1^2*t^8.63 - t^8.63/(g1^2*g2^8) - (7*t^8.63)/g2^4 + t^8.75/(g1^3*g2^33) + t^8.75/(g1*g2^29) + (g1*t^8.75)/g2^25 + (g1^3*t^8.75)/g2^21 + (3*g2^2*t^8.79)/g1^6 + (2*g2^6*t^8.79)/g1^4 + (6*g2^10*t^8.79)/g1^2 + 2*g2^14*t^8.79 + 6*g1^2*g2^18*t^8.79 + 2*g1^4*g2^22*t^8.79 + 3*g1^6*g2^26*t^8.79 - t^8.92/(g1^3*g2^15) - (4*t^8.92)/(g1*g2^11) - (4*g1*t^8.92)/g2^7 - (g1^3*t^8.92)/g2^3 + (g2^24*t^8.96)/g1^4 + 2*g2^32*t^8.96 + g1^4*g2^40*t^8.96 - t^4.32/(g2^2*y) - t^6.37/(g1^2*y) - (g1^2*g2^8*t^6.37)/y - t^6.66/(g1*g2^3*y) - (g1*g2*t^6.66)/y - t^6.95/(g2^6*y) + (g2^12*t^7.11)/y - t^7.23/(g1*g2^13*y) - (g1*t^7.23)/(g2^9*y) + (g2*t^7.4)/(g1^3*y) + (2*g2^5*t^7.4)/(g1*y) + (2*g1*g2^9*t^7.4)/y + (g1^3*g2^13*t^7.4)/y + (2*t^7.68)/(g1^2*g2^2*y) + (2*g2^2*t^7.68)/y + (2*g1^2*g2^6*t^7.68)/y + t^7.97/(g1^3*g2^9*y) + (4*t^7.97)/(g1*g2^5*y) + (4*g1*t^7.97)/(g2*y) + (g1^3*g2^3*t^7.97)/y + (2*t^8.26)/(g1^2*g2^12*y) + (3*t^8.26)/(g2^8*y) + (2*g1^2*t^8.26)/(g2^4*y) - (g2^2*t^8.42)/(g1^4*y) - (g2^10*t^8.42)/y - (g1^4*g2^18*t^8.42)/y + (2*t^8.55)/(g1*g2^15*y) + (2*g1*t^8.55)/(g2^11*y) - t^8.71/(g1^3*g2*y) - (g2^3*t^8.71)/(g1*y) - (g1*g2^7*t^8.71)/y - (g1^3*g2^11*t^8.71)/y + t^8.84/(g2^18*y) - (t^4.32*y)/g2^2 - (t^6.37*y)/g1^2 - g1^2*g2^8*t^6.37*y - (t^6.66*y)/(g1*g2^3) - g1*g2*t^6.66*y - (t^6.95*y)/g2^6 + g2^12*t^7.11*y - (t^7.23*y)/(g1*g2^13) - (g1*t^7.23*y)/g2^9 + (g2*t^7.4*y)/g1^3 + (2*g2^5*t^7.4*y)/g1 + 2*g1*g2^9*t^7.4*y + g1^3*g2^13*t^7.4*y + (2*t^7.68*y)/(g1^2*g2^2) + 2*g2^2*t^7.68*y + 2*g1^2*g2^6*t^7.68*y + (t^7.97*y)/(g1^3*g2^9) + (4*t^7.97*y)/(g1*g2^5) + (4*g1*t^7.97*y)/g2 + g1^3*g2^3*t^7.97*y + (2*t^8.26*y)/(g1^2*g2^12) + (3*t^8.26*y)/g2^8 + (2*g1^2*t^8.26*y)/g2^4 - (g2^2*t^8.42*y)/g1^4 - g2^10*t^8.42*y - g1^4*g2^18*t^8.42*y + (2*t^8.55*y)/(g1*g2^15) + (2*g1*t^8.55*y)/g2^11 - (t^8.71*y)/(g1^3*g2) - (g2^3*t^8.71*y)/g1 - g1*g2^7*t^8.71*y - g1^3*g2^11*t^8.71*y + (t^8.84*y)/g2^18 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55070 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7q_2\tilde{q}_2$ | 0.7166 | 0.9045 | 0.7922 | [X:[], M:[0.9659, 0.9725, 1.1248, 0.8752, 0.6806, 0.7845, 0.7779], q:[0.5932, 0.4409], qb:[0.4343, 0.7812], phi:[0.4376]] | t^2.04 + t^2.33 + t^2.35 + 2*t^2.63 + t^2.9 + t^2.92 + t^3.92 + t^3.94 + t^4.08 + t^4.12 + t^4.38 + 2*t^4.4 + t^4.42 + 3*t^4.67 + t^4.69 + t^4.71 + t^4.87 + t^4.94 + 3*t^4.96 + 2*t^4.98 + t^5.23 + 5*t^5.25 + t^5.27 + t^5.52 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.96 - 3*t^6. - t^4.31/y - t^4.31*y | detail |