Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55070 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ 0.7166 0.9045 0.7922 [M:[0.9659, 0.9725, 1.1248, 0.8752, 0.6806, 0.7845, 0.7779], q:[0.5932, 0.4409], qb:[0.4343, 0.7812], phi:[0.4376]] [M:[[1, -7], [-1, -11], [0, 4], [0, -4], [2, 10], [-1, -1], [1, 3]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{7}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{5}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ ${}$ -3 t^2.042 + t^2.334 + t^2.353 + 2*t^2.626 + t^2.898 + t^2.918 + t^3.919 + t^3.938 + t^4.083 + t^4.123 + t^4.375 + 2*t^4.395 + t^4.415 + 3*t^4.667 + t^4.687 + t^4.707 + t^4.872 + t^4.94 + 3*t^4.959 + 2*t^4.979 + t^5.231 + 5*t^5.251 + t^5.271 + t^5.523 + t^5.543 + t^5.796 + t^5.815 + t^5.835 + t^5.96 - 3*t^6. - t^6.02 + t^6.125 + t^6.165 + t^6.252 + t^6.272 + t^6.417 + 2*t^6.437 + t^6.457 + 2*t^6.544 + t^6.564 + 3*t^6.709 + 2*t^6.729 + 3*t^6.749 + t^6.769 + t^6.816 + t^6.836 + t^6.913 + t^6.981 + 4*t^7.001 + 4*t^7.021 + 2*t^7.041 + t^7.06 + t^7.205 + t^7.225 + t^7.273 + 6*t^7.293 + 2*t^7.313 + t^7.333 + t^7.497 + 2*t^7.565 + 5*t^7.585 + 4*t^7.605 + t^7.625 - t^7.77 - t^7.789 + 2*t^7.837 + 3*t^7.857 + 7*t^7.877 + t^7.897 + t^8.002 - 3*t^8.042 - 2*t^8.062 - t^8.081 + t^8.129 + 3*t^8.149 + t^8.167 + 3*t^8.169 + t^8.189 + t^8.206 + t^8.294 + t^8.314 - 4*t^8.334 - 5*t^8.353 - t^8.373 + t^8.421 + t^8.441 + t^8.459 + t^8.461 + 2*t^8.479 + t^8.498 + 3*t^8.586 - 6*t^8.626 - 2*t^8.645 + t^8.693 + t^8.713 + t^8.733 + 3*t^8.751 + t^8.753 + 2*t^8.771 + 4*t^8.79 + t^8.858 + 2*t^8.878 - 2*t^8.898 - 4*t^8.918 - t^8.937 + t^8.955 + t^8.995 - t^4.313/y - t^6.355/y - t^6.647/y - t^6.666/y - t^6.938/y - t^7.211/y - t^7.23/y + t^7.375/y + (2*t^7.395)/y + t^7.415/y + (2*t^7.667)/y + (2*t^7.687)/y + t^7.94/y + (4*t^7.959)/y + (3*t^7.979)/y + t^8.231/y + (3*t^8.251)/y + (2*t^8.271)/y - t^8.396/y + (2*t^8.523)/y + (2*t^8.543)/y - t^8.688/y - t^8.708/y + t^8.815/y + t^8.96/y - t^8.98/y - t^4.313*y - t^6.355*y - t^6.647*y - t^6.666*y - t^6.938*y - t^7.211*y - t^7.23*y + t^7.375*y + 2*t^7.395*y + t^7.415*y + 2*t^7.667*y + 2*t^7.687*y + t^7.94*y + 4*t^7.959*y + 3*t^7.979*y + t^8.231*y + 3*t^8.251*y + 2*t^8.271*y - t^8.396*y + 2*t^8.523*y + 2*t^8.543*y - t^8.688*y - t^8.708*y + t^8.815*y + t^8.96*y - t^8.98*y g1^2*g2^10*t^2.042 + g1*g2^3*t^2.334 + t^2.353/(g1*g2) + (2*t^2.626)/g2^4 + (g1*t^2.898)/g2^7 + t^2.918/(g1*g2^11) + (g1^2*t^3.919)/g2^2 + t^3.938/g2^6 + g1^4*g2^20*t^4.083 + g2^12*t^4.123 + g1^3*g2^13*t^4.375 + 2*g1*g2^9*t^4.395 + (g2^5*t^4.415)/g1 + 3*g1^2*g2^6*t^4.667 + g2^2*t^4.687 + t^4.707/(g1^2*g2^2) + g2^20*t^4.872 + g1^3*g2^3*t^4.94 + (3*g1*t^4.959)/g2 + (2*t^4.979)/(g1*g2^5) + (g1^2*t^5.231)/g2^4 + (5*t^5.251)/g2^8 + t^5.271/(g1^2*g2^12) + (g1*t^5.523)/g2^11 + t^5.543/(g1*g2^15) + (g1^2*t^5.796)/g2^14 + t^5.815/g2^18 + t^5.835/(g1^2*g2^22) + g1^4*g2^8*t^5.96 - 3*t^6. - t^6.02/(g1^2*g2^4) + g1^6*g2^30*t^6.125 + g1^2*g2^22*t^6.165 + g1^3*g2*t^6.252 + (g1*t^6.272)/g2^3 + g1^5*g2^23*t^6.417 + 2*g1^3*g2^19*t^6.437 + g1*g2^15*t^6.457 + (2*g1^2*t^6.544)/g2^6 + t^6.564/g2^10 + 3*g1^4*g2^16*t^6.709 + 2*g1^2*g2^12*t^6.729 + 3*g2^8*t^6.749 + (g2^4*t^6.769)/g1^2 + (g1^3*t^6.816)/g2^9 + (g1*t^6.836)/g2^13 + g1^2*g2^30*t^6.913 + g1^5*g2^13*t^6.981 + 4*g1^3*g2^9*t^7.001 + 4*g1*g2^5*t^7.021 + (2*g2*t^7.041)/g1 + t^7.06/(g1^3*g2^3) + g1*g2^23*t^7.205 + (g2^19*t^7.225)/g1 + g1^4*g2^6*t^7.273 + 6*g1^2*g2^2*t^7.293 + (2*t^7.313)/g2^2 + t^7.333/(g1^2*g2^6) + g2^16*t^7.497 + (2*g1^3*t^7.565)/g2 + (5*g1*t^7.585)/g2^5 + (4*t^7.605)/(g1*g2^9) + t^7.625/(g1^3*g2^13) - g1*g2^13*t^7.77 - (g2^9*t^7.789)/g1 + (2*g1^4*t^7.837)/g2^4 + (3*g1^2*t^7.857)/g2^8 + (7*t^7.877)/g2^12 + t^7.897/(g1^2*g2^16) + g1^6*g2^18*t^8.002 - 3*g1^2*g2^10*t^8.042 - 2*g2^6*t^8.062 - (g2^2*t^8.081)/g1^2 + (g1^3*t^8.129)/g2^11 + (3*g1*t^8.149)/g2^15 + g1^8*g2^40*t^8.167 + (3*t^8.169)/(g1*g2^19) + t^8.189/(g1^3*g2^23) + g1^4*g2^32*t^8.206 + g1^5*g2^11*t^8.294 + g1^3*g2^7*t^8.314 - 4*g1*g2^3*t^8.334 - (5*t^8.353)/(g1*g2) - t^8.373/(g1^3*g2^5) + (g1^2*t^8.421)/g2^18 + t^8.441/g2^22 + g1^7*g2^33*t^8.459 + t^8.461/(g1^2*g2^26) + 2*g1^5*g2^29*t^8.479 + g1^3*g2^25*t^8.498 + 3*g1^4*g2^4*t^8.586 - (6*t^8.626)/g2^4 - (2*t^8.645)/(g1^2*g2^8) + (g1^3*t^8.693)/g2^21 + (g1*t^8.713)/g2^25 + t^8.733/(g1*g2^29) + 3*g1^6*g2^26*t^8.751 + t^8.753/(g1^3*g2^33) + 2*g1^4*g2^22*t^8.771 + 4*g1^2*g2^18*t^8.79 + g1^5*g2*t^8.858 + (2*g1^3*t^8.878)/g2^3 - (2*g1*t^8.898)/g2^7 - (4*t^8.918)/(g1*g2^11) - t^8.937/(g1^3*g2^15) + g1^4*g2^40*t^8.955 + g2^32*t^8.995 - t^4.313/(g2^2*y) - (g1^2*g2^8*t^6.355)/y - (g1*g2*t^6.647)/y - t^6.666/(g1*g2^3*y) - t^6.938/(g2^6*y) - (g1*t^7.211)/(g2^9*y) - t^7.23/(g1*g2^13*y) + (g1^3*g2^13*t^7.375)/y + (2*g1*g2^9*t^7.395)/y + (g2^5*t^7.415)/(g1*y) + (2*g1^2*g2^6*t^7.667)/y + (2*g2^2*t^7.687)/y + (g1^3*g2^3*t^7.94)/y + (4*g1*t^7.959)/(g2*y) + (3*t^7.979)/(g1*g2^5*y) + (g1^2*t^8.231)/(g2^4*y) + (3*t^8.251)/(g2^8*y) + (2*t^8.271)/(g1^2*g2^12*y) - (g1^4*g2^18*t^8.396)/y + (2*g1*t^8.523)/(g2^11*y) + (2*t^8.543)/(g1*g2^15*y) - (g1^3*g2^11*t^8.688)/y - (g1*g2^7*t^8.708)/y + t^8.815/(g2^18*y) + (g1^4*g2^8*t^8.96)/y - (g1^2*g2^4*t^8.98)/y - (t^4.313*y)/g2^2 - g1^2*g2^8*t^6.355*y - g1*g2*t^6.647*y - (t^6.666*y)/(g1*g2^3) - (t^6.938*y)/g2^6 - (g1*t^7.211*y)/g2^9 - (t^7.23*y)/(g1*g2^13) + g1^3*g2^13*t^7.375*y + 2*g1*g2^9*t^7.395*y + (g2^5*t^7.415*y)/g1 + 2*g1^2*g2^6*t^7.667*y + 2*g2^2*t^7.687*y + g1^3*g2^3*t^7.94*y + (4*g1*t^7.959*y)/g2 + (3*t^7.979*y)/(g1*g2^5) + (g1^2*t^8.231*y)/g2^4 + (3*t^8.251*y)/g2^8 + (2*t^8.271*y)/(g1^2*g2^12) - g1^4*g2^18*t^8.396*y + (2*g1*t^8.523*y)/g2^11 + (2*t^8.543*y)/(g1*g2^15) - g1^3*g2^11*t^8.688*y - g1*g2^7*t^8.708*y + (t^8.815*y)/g2^18 + g1^4*g2^8*t^8.96*y - g1^2*g2^4*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
56704 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ + ${ }M_{5}M_{7}$ + ${ }M_{6}X_{1}$ 0.6026 0.7461 0.8076 [X:[1.3764], M:[1.0799, 0.7529, 1.1483, 0.8517, 1.0494, 0.6236, 0.9506], q:[0.6578, 0.2624], qb:[0.5894, 0.7871], phi:[0.4259]] t^2.259 + 2*t^2.555 + t^2.852 + t^3.148 + t^3.24 + t^3.833 + t^4.038 + t^4.129 + t^4.335 + t^4.517 + 2*t^4.814 + 4*t^5.11 + t^5.224 + 3*t^5.407 + t^5.498 + 2*t^5.703 + t^5.795 - 2*t^6. - t^4.278/y - t^4.278*y detail
56716 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.7372 0.9444 0.7806 [M:[0.9725, 0.9725, 1.1233, 0.8767, 0.685, 0.7808, 0.7808, 0.685], q:[0.5891, 0.4383], qb:[0.4383, 0.7808], phi:[0.4383]] 2*t^2.055 + 2*t^2.342 + 2*t^2.63 + 2*t^2.918 + t^3.945 + 4*t^4.11 + 6*t^4.397 + 7*t^4.685 + t^4.85 + 8*t^4.973 + 7*t^5.26 + 2*t^5.548 + 3*t^5.835 - 3*t^6. - t^4.315/y - t^4.315*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46880 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ 0.699 0.8725 0.8011 [M:[0.974, 0.9642, 1.1248, 0.8752, 0.697, 0.7763], q:[0.5933, 0.4327], qb:[0.4424, 0.7812], phi:[0.4376]] t^2.091 + t^2.329 + 2*t^2.625 + t^2.893 + t^2.922 + t^3.642 + t^3.938 + t^3.967 + t^4.124 + t^4.182 + t^4.391 + 2*t^4.42 + t^4.658 + 2*t^4.716 + t^4.873 + 2*t^4.955 + t^4.984 + t^5.013 + t^5.222 + 4*t^5.251 + t^5.518 + t^5.547 + t^5.733 + t^5.785 + t^5.815 + t^5.844 - 3*t^6. - t^4.313/y - t^4.313*y detail