Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4034 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}q_{1}q_{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.7372 0.9444 0.7806 [M:[0.9725, 1.1233, 0.9725, 0.685, 0.8767, 0.7808, 0.7808, 0.685], q:[0.7808, 0.4383], qb:[0.5891, 0.4383], phi:[0.4383]] [M:[[9], [-4], [9], [-6], [4], [-1], [-1], [-6]], q:[[-1], [2]], qb:[[-11], [2]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{8}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ ${}M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ -3 2*t^2.055 + 2*t^2.342 + 2*t^2.63 + 2*t^2.918 + t^3.945 + 4*t^4.11 + 6*t^4.397 + 7*t^4.685 + t^4.85 + 8*t^4.973 + 7*t^5.26 + 2*t^5.548 + 3*t^5.835 - 3*t^6. + 6*t^6.165 + 10*t^6.452 + t^6.575 + 16*t^6.74 + 2*t^6.905 + 20*t^7.027 + 2*t^7.192 + 17*t^7.315 + t^7.48 + 14*t^7.603 - 2*t^7.767 + 14*t^7.89 - 10*t^8.055 + 8*t^8.178 + 8*t^8.22 - 12*t^8.342 + 3*t^8.465 + 14*t^8.507 - 9*t^8.63 + 4*t^8.753 + 24*t^8.795 - 10*t^8.918 + 4*t^8.96 - t^4.315/y - (2*t^6.37)/y - (2*t^6.658)/y - t^6.945/y + t^7.11/y - (2*t^7.233)/y + (6*t^7.397)/y + (6*t^7.685)/y + (10*t^7.973)/y + (7*t^8.26)/y - (3*t^8.425)/y + (4*t^8.548)/y - (4*t^8.712)/y + t^8.835/y - t^4.315*y - 2*t^6.37*y - 2*t^6.658*y - t^6.945*y + t^7.11*y - 2*t^7.233*y + 6*t^7.397*y + 6*t^7.685*y + 10*t^7.973*y + 7*t^8.26*y - 3*t^8.425*y + 4*t^8.548*y - 4*t^8.712*y + t^8.835*y (2*t^2.055)/g1^6 + (2*t^2.342)/g1 + 2*g1^4*t^2.63 + 2*g1^9*t^2.918 + g1^6*t^3.945 + (4*t^4.11)/g1^12 + (6*t^4.397)/g1^7 + (7*t^4.685)/g1^2 + t^4.85/g1^20 + 8*g1^3*t^4.973 + 7*g1^8*t^5.26 + 2*g1^13*t^5.548 + 3*g1^18*t^5.835 - 3*t^6. + (6*t^6.165)/g1^18 + (10*t^6.452)/g1^13 + g1^10*t^6.575 + (16*t^6.74)/g1^8 + (2*t^6.905)/g1^26 + (20*t^7.027)/g1^3 + (2*t^7.192)/g1^21 + 17*g1^2*t^7.315 + t^7.48/g1^16 + 14*g1^7*t^7.603 - (2*t^7.767)/g1^11 + 14*g1^12*t^7.89 - (10*t^8.055)/g1^6 + 8*g1^17*t^8.178 + (8*t^8.22)/g1^24 - (12*t^8.342)/g1 + 3*g1^22*t^8.465 + (14*t^8.507)/g1^19 - 9*g1^4*t^8.63 + 4*g1^27*t^8.753 + (24*t^8.795)/g1^14 - 10*g1^9*t^8.918 + (4*t^8.96)/g1^32 - (g1^2*t^4.315)/y - (2*t^6.37)/(g1^4*y) - (2*g1*t^6.658)/y - (g1^6*t^6.945)/y + t^7.11/(g1^12*y) - (2*g1^11*t^7.233)/y + (6*t^7.397)/(g1^7*y) + (6*t^7.685)/(g1^2*y) + (10*g1^3*t^7.973)/y + (7*g1^8*t^8.26)/y - (3*t^8.425)/(g1^10*y) + (4*g1^13*t^8.548)/y - (4*t^8.712)/(g1^5*y) + (g1^18*t^8.835)/y - g1^2*t^4.315*y - (2*t^6.37*y)/g1^4 - 2*g1*t^6.658*y - g1^6*t^6.945*y + (t^7.11*y)/g1^12 - 2*g1^11*t^7.233*y + (6*t^7.397*y)/g1^7 + (6*t^7.685*y)/g1^2 + 10*g1^3*t^7.973*y + 7*g1^8*t^8.26*y - (3*t^8.425*y)/g1^10 + 4*g1^13*t^8.548*y - (4*t^8.712*y)/g1^5 + g1^18*t^8.835*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1641 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}q_{1}q_{2}$ 0.7165 0.904 0.7926 [M:[0.9701, 1.1244, 0.9701, 0.6866, 0.8756, 0.7811, 0.7811], q:[0.7811, 0.4378], qb:[0.5921, 0.4378], phi:[0.4378]] t^2.06 + 2*t^2.343 + 2*t^2.627 + 2*t^2.91 + 2*t^3.94 + 2*t^4.12 + 4*t^4.403 + 5*t^4.687 + t^4.866 + 6*t^4.97 + 7*t^5.254 + 2*t^5.537 + 3*t^5.821 - 3*t^6. - t^4.313/y - t^4.313*y detail