Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57641 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}q_{2}\tilde{q}_{1}$ 0.7202 0.9221 0.7811 [M:[1.1676, 0.9694, 0.8324, 0.77, 0.7952, 0.6702, 0.8324, 0.9069], q:[0.385, 0.4475], qb:[0.6456, 0.7826], phi:[0.4348]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28], [-1, 7], [1, -15]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{8}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{6}M_{8}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{5}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{8}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}^{2}$ ${}$ -3 t^2.011 + t^2.31 + t^2.386 + 2*t^2.497 + t^2.609 + t^2.721 + t^2.908 + t^3.802 + t^4.021 + t^4.285 + t^4.321 + 2*t^4.396 + 2*t^4.508 + t^4.584 + 2*t^4.62 + t^4.695 + t^4.731 + t^4.771 + 2*t^4.807 + 2*t^4.883 + 2*t^4.919 + 4*t^4.995 + t^5.031 + 3*t^5.106 + t^5.178 + 3*t^5.218 + t^5.294 + t^5.33 + t^5.406 + t^5.442 + t^5.517 + t^5.629 + t^5.817 - 3*t^6. + t^6.032 + t^6.295 + t^6.299 + t^6.331 + 2*t^6.407 + 2*t^6.519 + t^6.594 + 2*t^6.63 + t^6.67 + 2*t^6.706 + t^6.742 + 2*t^6.782 + 2*t^6.818 + 4*t^6.894 + 3*t^6.93 + t^6.969 + 5*t^7.005 + t^7.041 + 2*t^7.081 + 5*t^7.117 + t^7.157 + t^7.189 + 2*t^7.193 + 4*t^7.229 + 2*t^7.269 + 4*t^7.305 + 2*t^7.341 + 3*t^7.38 + 4*t^7.416 + t^7.452 + t^7.488 + 6*t^7.492 + 4*t^7.528 + t^7.564 + 6*t^7.604 + 2*t^7.64 + t^7.675 + t^7.679 + 5*t^7.715 + t^7.752 + t^7.791 + 5*t^7.827 - t^7.899 + 2*t^7.903 + 3*t^7.939 - t^7.975 - 3*t^8.011 + 2*t^8.015 + t^8.043 + t^8.051 - t^8.086 - t^8.122 + 3*t^8.126 + t^8.162 - 2*t^8.198 + t^8.202 + t^8.238 - t^8.274 + t^8.306 - 4*t^8.31 + t^8.314 + t^8.342 + t^8.35 - 4*t^8.386 + 2*t^8.418 - t^8.422 + t^8.426 - 7*t^8.497 + 2*t^8.529 - t^8.533 + t^8.537 + t^8.605 - 4*t^8.609 + 2*t^8.641 + t^8.681 - t^8.685 + 2*t^8.717 - 4*t^8.721 + t^8.725 + t^8.753 + 2*t^8.792 + 2*t^8.829 - t^8.833 + 4*t^8.904 - 3*t^8.908 + 3*t^8.94 + t^8.98 - t^4.305/y - t^6.315/y - t^6.614/y - t^6.69/y - t^6.802/y - t^6.914/y - t^7.025/y - t^7.213/y + t^7.321/y + (2*t^7.396)/y + (2*t^7.508)/y + t^7.584/y + t^7.62/y + (2*t^7.695)/y + t^7.731/y + (3*t^7.807)/y + (2*t^7.883)/y + (3*t^7.919)/y + (3*t^7.995)/y + t^8.031/y + (3*t^8.106)/y + (3*t^8.218)/y + (2*t^8.294)/y - t^8.326/y + t^8.33/y + (2*t^8.406)/y + t^8.517/y - t^8.625/y + t^8.629/y - t^8.701/y - (2*t^8.924)/y - t^4.305*y - t^6.315*y - t^6.614*y - t^6.69*y - t^6.802*y - t^6.914*y - t^7.025*y - t^7.213*y + t^7.321*y + 2*t^7.396*y + 2*t^7.508*y + t^7.584*y + t^7.62*y + 2*t^7.695*y + t^7.731*y + 3*t^7.807*y + 2*t^7.883*y + 3*t^7.919*y + 3*t^7.995*y + t^8.031*y + 3*t^8.106*y + 3*t^8.218*y + 2*t^8.294*y - t^8.326*y + t^8.33*y + 2*t^8.406*y + t^8.517*y - t^8.625*y + t^8.629*y - t^8.701*y - 2*t^8.924*y (g1^4*t^2.011)/g2^28 + (g1^2*t^2.31)/g2^16 + (g2^18*t^2.386)/g1^2 + (2*g2^7*t^2.497)/g1 + t^2.609/g2^4 + (g1*t^2.721)/g2^15 + (g2^8*t^2.908)/g1^2 + (g2^5*t^3.802)/g1 + (g1^8*t^4.021)/g2^56 + g1*g2*t^4.285 + (g1^6*t^4.321)/g2^44 + (2*g1^2*t^4.396)/g2^10 + (2*g1^3*t^4.508)/g2^21 + (g2^13*t^4.584)/g1 + (2*g1^4*t^4.62)/g2^32 + g2^2*t^4.695 + (g1^5*t^4.731)/g2^43 + (g2^36*t^4.771)/g1^4 + (2*g1*t^4.807)/g2^9 + (2*g2^25*t^4.883)/g1^3 + (2*g1^2*t^4.919)/g2^20 + (4*g2^14*t^4.995)/g1^2 + (g1^3*t^5.031)/g2^31 + (3*g2^3*t^5.106)/g1 + (g1^2*t^5.178)/g2^2 + (3*t^5.218)/g2^8 + (g2^26*t^5.294)/g1^4 + (g1*t^5.33)/g2^19 + (g2^15*t^5.406)/g1^3 + (g1^2*t^5.442)/g2^30 + (g2^4*t^5.517)/g1^2 + t^5.629/(g1*g2^7) + (g2^16*t^5.817)/g1^4 - 3*t^6. + (g1^12*t^6.032)/g2^84 + (g1^5*t^6.295)/g2^27 + (g2^12*t^6.299)/g1^2 + (g1^10*t^6.331)/g2^72 + (2*g1^6*t^6.407)/g2^38 + (2*g1^7*t^6.519)/g2^49 + (g1^3*t^6.594)/g2^15 + (2*g1^8*t^6.63)/g2^60 + (g2^19*t^6.67)/g1 + (2*g1^4*t^6.706)/g2^26 + (g1^9*t^6.742)/g2^71 + 2*g2^8*t^6.782 + (2*g1^5*t^6.818)/g2^37 + (4*g1*t^6.894)/g2^3 + (3*g1^6*t^6.93)/g2^48 + (g2^31*t^6.969)/g1^3 + (5*g1^2*t^7.005)/g2^14 + (g1^7*t^7.041)/g2^59 + (2*g2^20*t^7.081)/g1^2 + (5*g1^3*t^7.117)/g2^25 + (g2^54*t^7.157)/g1^6 + (g1^6*t^7.189)/g2^30 + (2*g2^9*t^7.193)/g1 + (4*g1^4*t^7.229)/g2^36 + (2*g2^43*t^7.269)/g1^5 + (4*t^7.305)/g2^2 + (2*g1^5*t^7.341)/g2^47 + (3*g2^32*t^7.38)/g1^4 + (4*g1*t^7.416)/g2^13 + (g1^6*t^7.452)/g2^58 + (g1^4*t^7.488)/g2^18 + (6*g2^21*t^7.492)/g1^3 + (4*g1^2*t^7.528)/g2^24 + g2^16*t^7.564 + (6*g2^10*t^7.604)/g1^2 + (2*g1^3*t^7.64)/g2^35 + g1*g2^5*t^7.675 + (g2^44*t^7.679)/g1^6 + (5*t^7.715)/(g1*g2) + (g1^4*t^7.752)/g2^46 + (g2^33*t^7.791)/g1^5 + (5*t^7.827)/g2^12 - (g1^3*t^7.899)/g2^17 + (2*g2^22*t^7.903)/g1^4 + (3*g1*t^7.939)/g2^23 - (g2^17*t^7.975)/g1 - (3*g1^4*t^8.011)/g2^28 + (2*g2^11*t^8.015)/g1^3 + (g1^16*t^8.043)/g2^112 + (g1^2*t^8.051)/g2^34 - g2^6*t^8.086 - (g1^5*t^8.122)/g2^39 + (3*t^8.126)/g1^2 + (g1^3*t^8.162)/g2^45 - (2*g1*t^8.198)/g2^5 + (g2^34*t^8.202)/g1^6 + t^8.238/(g1*g2^11) - (g2^29*t^8.274)/g1^3 + (g1^9*t^8.306)/g2^55 - (4*g1^2*t^8.31)/g2^16 + (g2^23*t^8.314)/g1^5 + (g1^14*t^8.342)/g2^100 + t^8.35/g2^22 - (4*g2^18*t^8.386)/g1^2 + (2*g1^10*t^8.418)/g2^66 - (g1^3*t^8.422)/g2^27 + (g2^12*t^8.426)/g1^4 - (7*g2^7*t^8.497)/g1 + (2*g1^11*t^8.529)/g2^77 - (g1^4*t^8.533)/g2^38 + (g2*t^8.537)/g1^3 + (g1^7*t^8.605)/g2^43 - (4*t^8.609)/g2^4 + (2*g1^12*t^8.641)/g2^88 + (g1^3*t^8.681)/g2^9 - (g2^30*t^8.685)/g1^4 + (2*g1^8*t^8.717)/g2^54 - (4*g1*t^8.721)/g2^15 + (g2^24*t^8.725)/g1^6 + (g1^13*t^8.753)/g2^99 + (2*g1^4*t^8.792)/g2^20 + (2*g1^9*t^8.829)/g2^65 - (g1^2*t^8.833)/g2^26 + (4*g1^5*t^8.904)/g2^31 - (3*g2^8*t^8.908)/g1^2 + (3*g1^10*t^8.94)/g2^76 + g1*g2^3*t^8.98 - t^4.305/(g2^2*y) - (g1^4*t^6.315)/(g2^30*y) - (g1^2*t^6.614)/(g2^18*y) - (g2^16*t^6.69)/(g1^2*y) - (g2^5*t^6.802)/(g1*y) - t^6.914/(g2^6*y) - (g1*t^7.025)/(g2^17*y) - (g2^6*t^7.213)/(g1^2*y) + (g1^6*t^7.321)/(g2^44*y) + (2*g1^2*t^7.396)/(g2^10*y) + (2*g1^3*t^7.508)/(g2^21*y) + (g2^13*t^7.584)/(g1*y) + (g1^4*t^7.62)/(g2^32*y) + (2*g2^2*t^7.695)/y + (g1^5*t^7.731)/(g2^43*y) + (3*g1*t^7.807)/(g2^9*y) + (2*g2^25*t^7.883)/(g1^3*y) + (3*g1^2*t^7.919)/(g2^20*y) + (3*g2^14*t^7.995)/(g1^2*y) + (g1^3*t^8.031)/(g2^31*y) + (3*g2^3*t^8.106)/(g1*y) + (3*t^8.218)/(g2^8*y) + (2*g2^26*t^8.294)/(g1^4*y) - (g1^8*t^8.326)/(g2^58*y) + (g1*t^8.33)/(g2^19*y) + (2*g2^15*t^8.406)/(g1^3*y) + (g2^4*t^8.517)/(g1^2*y) - (g1^6*t^8.625)/(g2^46*y) + t^8.629/(g1*g2^7*y) - (g1^2*t^8.701)/(g2^12*y) - (2*g1^4*t^8.924)/(g2^34*y) - (t^4.305*y)/g2^2 - (g1^4*t^6.315*y)/g2^30 - (g1^2*t^6.614*y)/g2^18 - (g2^16*t^6.69*y)/g1^2 - (g2^5*t^6.802*y)/g1 - (t^6.914*y)/g2^6 - (g1*t^7.025*y)/g2^17 - (g2^6*t^7.213*y)/g1^2 + (g1^6*t^7.321*y)/g2^44 + (2*g1^2*t^7.396*y)/g2^10 + (2*g1^3*t^7.508*y)/g2^21 + (g2^13*t^7.584*y)/g1 + (g1^4*t^7.62*y)/g2^32 + 2*g2^2*t^7.695*y + (g1^5*t^7.731*y)/g2^43 + (3*g1*t^7.807*y)/g2^9 + (2*g2^25*t^7.883*y)/g1^3 + (3*g1^2*t^7.919*y)/g2^20 + (3*g2^14*t^7.995*y)/g1^2 + (g1^3*t^8.031*y)/g2^31 + (3*g2^3*t^8.106*y)/g1 + (3*t^8.218*y)/g2^8 + (2*g2^26*t^8.294*y)/g1^4 - (g1^8*t^8.326*y)/g2^58 + (g1*t^8.33*y)/g2^19 + (2*g2^15*t^8.406*y)/g1^3 + (g2^4*t^8.517*y)/g1^2 - (g1^6*t^8.625*y)/g2^46 + (t^8.629*y)/(g1*g2^7) - (g1^2*t^8.701*y)/g2^12 - (2*g1^4*t^8.924*y)/g2^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55918 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ 0.7146 0.9134 0.7823 [M:[1.1709, 1.0101, 0.8291, 0.7925, 0.7568, 0.6837, 0.8291], q:[0.3963, 0.4328], qb:[0.5936, 0.7747], phi:[0.4507]] t^2.051 + t^2.271 + t^2.378 + 2*t^2.487 + t^2.704 + t^3.03 + t^3.079 + t^3.839 + t^4.102 + t^4.105 + 2*t^4.322 + t^4.429 + t^4.431 + 2*t^4.538 + t^4.541 + t^4.648 + 2*t^4.755 + 2*t^4.758 + 2*t^4.865 + t^4.914 + 4*t^4.974 + 2*t^5.081 + t^5.131 + 2*t^5.191 + t^5.301 + t^5.35 + t^5.408 + t^5.457 + t^5.518 + 2*t^5.567 + t^5.734 + t^5.783 - 3*t^6. - t^4.352/y - t^4.352*y detail