Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55726 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ + $ M_2q_2\tilde{q}_1$ 0.8564 1.0547 0.8119 [X:[], M:[0.8886, 0.7161], q:[0.7084, 0.7359, 0.7222], qb:[0.548, 0.5314, 0.5314], phi:[0.5557]] [X:[], M:[[0, 4, 4, 4], [-1, -5, 0, 0]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ M_2^2$, $ q_1q_2$, $ q_2q_3$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_1$ . -6 t^2.15 + t^2.67 + t^3.19 + 2*t^3.24 + 2*t^3.72 + 2*t^3.76 + t^3.77 + 2*t^3.8 + t^3.81 + t^4.29 + t^4.3 + t^4.33 + t^4.37 + t^4.81 + 3*t^4.86 + 2*t^4.91 + t^4.95 + t^5.33 + t^5.34 + 2*t^5.39 + t^5.85 + 2*t^5.87 + 2*t^5.9 + 2*t^5.91 + t^5.92 - 6*t^6. - t^6.04 - 2*t^6.05 + t^6.38 + 2*t^6.39 + 4*t^6.43 + 2*t^6.44 + t^6.45 + 2*t^6.47 + 4*t^6.48 - 2*t^6.53 - t^6.56 - 2*t^6.57 - 2*t^6.61 + 2*t^6.91 + 2*t^6.95 + 6*t^6.96 + 2*t^6.99 + 8*t^7. + 2*t^7.01 + 4*t^7.04 + 2*t^7.05 - 2*t^7.09 - 3*t^7.14 - t^7.19 + 3*t^7.44 + 5*t^7.48 + 3*t^7.49 + 7*t^7.52 + 6*t^7.53 + t^7.54 + 4*t^7.56 + 4*t^7.57 + t^7.58 + 3*t^7.6 + 2*t^7.61 - t^7.62 - t^7.63 - 5*t^7.67 - t^7.71 - 2*t^7.72 + 2*t^8. + 2*t^8.01 + 2*t^8.02 + 3*t^8.04 + 4*t^8.05 + 3*t^8.06 + t^8.07 + 8*t^8.09 + t^8.1 + 2*t^8.13 + 4*t^8.14 - 6*t^8.15 + 2*t^8.18 + t^8.19 - 2*t^8.2 + t^8.52 + 3*t^8.53 + 10*t^8.57 + t^8.58 + 2*t^8.59 + 10*t^8.62 + 4*t^8.66 - t^8.67 - 2*t^8.68 - t^8.71 - t^8.72 + t^8.77 + 3*t^8.81 - t^4.67/y - t^6.82/y + t^7.81/y + t^8.34/y + (2*t^8.39)/y + t^8.52/y + t^8.85/y + (2*t^8.87)/y + (2*t^8.9)/y + (2*t^8.91)/y + t^8.92/y + (2*t^8.95)/y - t^4.67*y - t^6.82*y + t^7.81*y + t^8.34*y + 2*t^8.39*y + t^8.52*y + t^8.85*y + 2*t^8.87*y + 2*t^8.9*y + 2*t^8.91*y + t^8.92*y + 2*t^8.95*y t^2.15/(g1*g2^5) + g2^4*g3^4*g4^4*t^2.67 + g3^5*g4^5*t^3.19 + g2^5*g3^5*t^3.24 + g2^5*g4^5*t^3.24 + (g2^2*g3^7*g4^2*t^3.72)/g1 + (g2^2*g3^2*g4^7*t^3.72)/g1 + g2*g3^6*g4*t^3.76 + g2*g3*g4^6*t^3.76 + (g2^7*g3^2*g4^2*t^3.77)/g1 + g1*g3^5*t^3.8 + g1*g4^5*t^3.8 + g2^6*g3*g4*t^3.81 + (g2^3*g3^3*g4^3*t^4.29)/g1 + t^4.3/(g1^2*g2^10) + g2^2*g3^2*g4^2*t^4.33 + g1*g2*g3*g4*t^4.37 + (g3^4*g4^4*t^4.81)/(g1*g2) + (g3^8*t^4.86)/(g2^2*g4^2) + (g3^3*g4^3*t^4.86)/g2^2 + (g4^8*t^4.86)/(g2^2*g3^2) + (g2^3*g3^3*t^4.91)/g4^2 + (g2^3*g4^3*t^4.91)/g3^2 + (g2^8*t^4.95)/(g3^2*g4^2) + g2^8*g3^8*g4^8*t^5.33 + (g3^5*g4^5*t^5.34)/(g1*g2^5) + (g3^5*t^5.39)/g1 + (g4^5*t^5.39)/g1 + g2^4*g3^9*g4^9*t^5.85 + (g3^7*g4^2*t^5.87)/(g1^2*g2^3) + (g3^2*g4^7*t^5.87)/(g1^2*g2^3) + g2^9*g3^9*g4^4*t^5.9 + g2^9*g3^4*g4^9*t^5.9 + (g3^6*g4*t^5.91)/(g1*g2^4) + (g3*g4^6*t^5.91)/(g1*g2^4) + (g2^2*g3^2*g4^2*t^5.92)/g1^2 - 4*t^6. - (g3^5*t^6.)/g4^5 - (g4^5*t^6.)/g3^5 - (g1*t^6.04)/(g2*g3*g4) - (g2^5*t^6.05)/g3^5 - (g2^5*t^6.05)/g4^5 + g3^10*g4^10*t^6.38 + (g2^6*g3^11*g4^6*t^6.39)/g1 + (g2^6*g3^6*g4^11*t^6.39)/g1 + 2*g2^5*g3^10*g4^5*t^6.43 + 2*g2^5*g3^5*g4^10*t^6.43 + (g3^3*g4^3*t^6.44)/(g1^2*g2^2) + (g2^11*g3^6*g4^6*t^6.44)/g1 + t^6.45/(g1^3*g2^15) + g1*g2^4*g3^9*g4^4*t^6.47 + g1*g2^4*g3^4*g4^9*t^6.47 + g2^10*g3^10*t^6.48 + 2*g2^10*g3^5*g4^5*t^6.48 + g2^10*g4^10*t^6.48 - (g2^2*g3^2*t^6.53)/(g1*g4^3) - (g2^2*g4^2*t^6.53)/(g1*g3^3) - (g1*t^6.56)/g2^5 - (g2*g3*t^6.57)/g4^4 - (g2*g4*t^6.57)/g3^4 - (g1*t^6.61)/g3^5 - (g1*t^6.61)/g4^5 + (g2^2*g3^12*g4^7*t^6.91)/g1 + (g2^2*g3^7*g4^12*t^6.91)/g1 + g2*g3^11*g4^6*t^6.95 + g2*g3^6*g4^11*t^6.95 + (g2^7*g3^12*g4^2*t^6.96)/g1 + (g3^4*g4^4*t^6.96)/(g1^2*g2^6) + (3*g2^7*g3^7*g4^7*t^6.96)/g1 + (g2^7*g3^2*g4^12*t^6.96)/g1 + g1*g3^10*g4^5*t^6.99 + g1*g3^5*g4^10*t^6.99 + (g3^8*t^7.)/(g1*g2^7*g4^2) + g2^6*g3^11*g4*t^7. + (g3^3*g4^3*t^7.)/(g1*g2^7) + 3*g2^6*g3^6*g4^6*t^7. + (g4^8*t^7.)/(g1*g2^7*g3^2) + g2^6*g3*g4^11*t^7. + (g2^12*g3^7*g4^2*t^7.01)/g1 + (g2^12*g3^2*g4^7*t^7.01)/g1 + g1*g2^5*g3^10*t^7.04 + 2*g1*g2^5*g3^5*g4^5*t^7.04 + g1*g2^5*g4^10*t^7.04 + g2^11*g3^6*g4*t^7.05 + g2^11*g3*g4^6*t^7.05 - (g3^2*t^7.09)/(g2^3*g4^3) - (g4^2*t^7.09)/(g2^3*g3^3) - (g1*g3*t^7.14)/(g2^4*g4^4) - (g2^2*t^7.14)/(g3^3*g4^3) - (g1*g4*t^7.14)/(g2^4*g3^4) - (g1*g2*t^7.19)/(g3^4*g4^4) + (g2^4*g3^14*g4^4*t^7.44)/g1^2 + (g2^4*g3^9*g4^9*t^7.44)/g1^2 + (g2^4*g3^4*g4^14*t^7.44)/g1^2 + (g2^3*g3^13*g4^3*t^7.48)/g1 + (3*g2^3*g3^8*g4^8*t^7.48)/g1 + (g2^3*g3^3*g4^13*t^7.48)/g1 + (g2^9*g3^9*g4^4*t^7.49)/g1^2 + (g3^5*g4^5*t^7.49)/(g1^2*g2^10) + (g2^9*g3^4*g4^9*t^7.49)/g1^2 + 2*g2^2*g3^12*g4^2*t^7.52 + 3*g2^2*g3^7*g4^7*t^7.52 + 2*g2^2*g3^2*g4^12*t^7.52 + (g3^5*t^7.53)/(g1^2*g2^5) + (2*g2^8*g3^8*g4^3*t^7.53)/g1 + (g4^5*t^7.53)/(g1^2*g2^5) + (2*g2^8*g3^3*g4^8*t^7.53)/g1 + (g2^14*g3^4*g4^4*t^7.54)/g1^2 + g1*g2*g3^11*g4*t^7.56 + 2*g1*g2*g3^6*g4^6*t^7.56 + g1*g2*g3*g4^11*t^7.56 + 2*g2^7*g3^7*g4^2*t^7.57 + 2*g2^7*g3^2*g4^7*t^7.57 + (g2^13*g3^3*g4^3*t^7.58)/g1 + g1^2*g3^10*t^7.6 + g1^2*g3^5*g4^5*t^7.6 + g1^2*g4^10*t^7.6 + g1*g2^6*g3^6*g4*t^7.61 + g1*g2^6*g3*g4^6*t^7.61 - (g3^3*t^7.62)/(g2^7*g4^2) + g2^12*g3^2*g4^2*t^7.62 - (g4^3*t^7.62)/(g2^7*g3^2) - t^7.63/(g1*g2*g3*g4) - (g3^3*t^7.67)/(g2^2*g4^7) - (3*t^7.67)/(g2^2*g3^2*g4^2) - (g4^3*t^7.67)/(g2^2*g3^7) - (g1*t^7.71)/(g2^3*g3^3*g4^3) - (g2^3*t^7.72)/(g3^2*g4^7) - (g2^3*t^7.72)/(g3^7*g4^2) + (g3^9*g4^9*t^8.)/(g1*g2) + g2^12*g3^12*g4^12*t^8. + (g2^5*g3^10*g4^5*t^8.01)/g1^2 + (g2^5*g3^5*g4^10*t^8.01)/g1^2 + (g3^7*g4^2*t^8.02)/(g1^3*g2^8) + (g3^2*g4^7*t^8.02)/(g1^3*g2^8) + (g3^13*g4^3*t^8.04)/g2^2 + (g3^8*g4^8*t^8.04)/g2^2 + (g3^3*g4^13*t^8.04)/g2^2 + (2*g2^4*g3^9*g4^4*t^8.05)/g1 + (2*g2^4*g3^4*g4^9*t^8.05)/g1 + (g3^6*g4*t^8.06)/(g1^2*g2^9) + (g2^10*g3^5*g4^5*t^8.06)/g1^2 + (g3*g4^6*t^8.06)/(g1^2*g2^9) + (g3^2*g4^2*t^8.07)/(g1^3*g2^3) + (g2^3*g3^13*t^8.09)/g4^2 + 3*g2^3*g3^8*g4^3*t^8.09 + 3*g2^3*g3^3*g4^8*t^8.09 + (g2^3*g4^13*t^8.09)/g3^2 + (g2^9*g3^4*g4^4*t^8.1)/g1 + g1*g2^2*g3^7*g4^2*t^8.13 + g1*g2^2*g3^2*g4^7*t^8.13 + (g2^8*g3^8*t^8.14)/g4^2 + 2*g2^8*g3^3*g4^3*t^8.14 + (g2^8*g4^8*t^8.14)/g3^2 - (4*t^8.15)/(g1*g2^5) - (g3^5*t^8.15)/(g1*g2^5*g4^5) - (g4^5*t^8.15)/(g1*g2^5*g3^5) + g1^2*g2*g3^6*g4*t^8.18 + g1^2*g2*g3*g4^6*t^8.18 + (g2^13*g3^3*t^8.19)/g4^2 - t^8.19/(g2^6*g3*g4) + (g2^13*g4^3*t^8.19)/g3^2 - t^8.2/(g1*g3^5) - t^8.2/(g1*g4^5) + g2^8*g3^13*g4^13*t^8.52 + (g2*g3^11*g4^6*t^8.53)/g1^2 + (g3^10*g4^10*t^8.53)/(g1*g2^5) + (g2*g3^6*g4^11*t^8.53)/g1^2 + (g3^15*t^8.57)/g1 + (3*g3^10*g4^5*t^8.57)/g1 + g2^13*g3^13*g4^8*t^8.57 + (3*g3^5*g4^10*t^8.57)/g1 + g2^13*g3^8*g4^13*t^8.57 + (g4^15*t^8.57)/g1 + (g2^6*g3^6*g4^6*t^8.58)/g1^2 + t^8.59/(g1^4*g2^20) + (g3^3*g4^3*t^8.59)/(g1^3*g2^7) + (2*g2^5*g3^10*t^8.62)/g1 + (g3^14*t^8.62)/(g2*g4) + (g3^9*g4^4*t^8.62)/g2 + (2*g2^5*g3^5*g4^5*t^8.62)/g1 + (g3^4*g4^9*t^8.62)/g2 + (2*g2^5*g4^10*t^8.62)/g1 + (g4^14*t^8.62)/(g2*g3) + (g1*g3^13*t^8.66)/(g2^2*g4^2) + (g1*g3^8*g4^3*t^8.66)/g2^2 + (g1*g3^3*g4^8*t^8.66)/g2^2 + (g1*g4^13*t^8.66)/(g2^2*g3^2) + (g2^10*g3^5*t^8.67)/g1 - 3*g2^4*g3^4*g4^4*t^8.67 + (g2^10*g4^5*t^8.67)/g1 - (g3^2*t^8.68)/(g1^2*g2^3*g4^3) - (g4^2*t^8.68)/(g1^2*g2^3*g3^3) - g1*g2^3*g3^3*g4^3*t^8.71 + (g2^15*t^8.72)/g1 - (g3*t^8.72)/(g1*g2^4*g4^4) - (g4*t^8.72)/(g1*g2^4*g3^4) + (g2^14*t^8.77)/(g3*g4) + t^8.81/g3^10 + t^8.81/g4^10 + t^8.81/(g3^5*g4^5) - t^4.67/(g2^2*g3^2*g4^2*y) - t^6.82/(g1*g2^7*g3^2*g4^2*y) + (g3^4*g4^4*t^7.81)/(g1*g2*y) + (g3^5*g4^5*t^8.34)/(g1*g2^5*y) + (g3^5*t^8.39)/(g1*y) + (g4^5*t^8.39)/(g1*y) + (g1*g2^3*t^8.52)/(g3^2*g4^2*y) + (g2^4*g3^9*g4^9*t^8.85)/y + (g3^7*g4^2*t^8.87)/(g1^2*g2^3*y) + (g3^2*g4^7*t^8.87)/(g1^2*g2^3*y) + (g2^9*g3^9*g4^4*t^8.9)/y + (g2^9*g3^4*g4^9*t^8.9)/y + (g3^6*g4*t^8.91)/(g1*g2^4*y) + (g3*g4^6*t^8.91)/(g1*g2^4*y) + (g2^2*g3^2*g4^2*t^8.92)/(g1^2*y) + (g3^5*t^8.95)/(g2^5*y) + (g4^5*t^8.95)/(g2^5*y) - t^8.96/(g1^2*g2^12*g3^2*g4^2*y) + (g2*g3*g4*t^8.96)/(g1*y) - (t^4.67*y)/(g2^2*g3^2*g4^2) - (t^6.82*y)/(g1*g2^7*g3^2*g4^2) + (g3^4*g4^4*t^7.81*y)/(g1*g2) + (g3^5*g4^5*t^8.34*y)/(g1*g2^5) + (g3^5*t^8.39*y)/g1 + (g4^5*t^8.39*y)/g1 + (g1*g2^3*t^8.52*y)/(g3^2*g4^2) + g2^4*g3^9*g4^9*t^8.85*y + (g3^7*g4^2*t^8.87*y)/(g1^2*g2^3) + (g3^2*g4^7*t^8.87*y)/(g1^2*g2^3) + g2^9*g3^9*g4^4*t^8.9*y + g2^9*g3^4*g4^9*t^8.9*y + (g3^6*g4*t^8.91*y)/(g1*g2^4) + (g3*g4^6*t^8.91*y)/(g1*g2^4) + (g2^2*g3^2*g4^2*t^8.92*y)/g1^2 + (g3^5*t^8.95*y)/g2^5 + (g4^5*t^8.95*y)/g2^5 - (t^8.96*y)/(g1^2*g2^12*g3^2*g4^2) + (g2*g3*g4*t^8.96*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55690 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ 0.8366 1.0194 0.8207 [X:[], M:[0.8786], q:[0.7197, 0.7197, 0.7197], qb:[0.5328, 0.5328, 0.5328], phi:[0.5607]] t^2.64 + 3*t^3.2 + 9*t^3.76 + 3*t^4.32 + 6*t^4.88 + t^5.27 + 3*t^5.83 - 12*t^6. - t^4.68/y - t^4.68*y detail