Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55726 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 0.8564 1.0547 0.8119 [M:[0.8886, 0.7161], q:[0.7084, 0.7359, 0.7222], qb:[0.548, 0.5314, 0.5314], phi:[0.5557]] [M:[[0, 4, 4, 4], [-1, -5, 0, 0]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{1}q_{3}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}$, ${ }q_{2}q_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ ${}$ -6 t^2.148 + t^2.666 + t^3.188 + 2*t^3.238 + 2*t^3.719 + 2*t^3.761 + t^3.769 + 2*t^3.802 + t^3.81 + t^4.292 + t^4.297 + t^4.333 + t^4.374 + t^4.814 + 3*t^4.855 + 2*t^4.905 + t^4.955 + t^5.332 + t^5.337 + 2*t^5.387 + t^5.854 + 2*t^5.868 + 2*t^5.904 + 2*t^5.909 + t^5.918 - 6*t^6. - t^6.041 - 2*t^6.05 + t^6.377 + 2*t^6.385 + 4*t^6.426 + t^6.435 + t^6.44 + t^6.445 + 2*t^6.468 + 4*t^6.476 - 2*t^6.531 - t^6.564 - 2*t^6.572 - 2*t^6.613 + 2*t^6.908 + 2*t^6.949 + 5*t^6.958 + t^6.963 + 2*t^6.99 + 5*t^6.999 + 3*t^7.004 + 2*t^7.007 + 4*t^7.04 + 2*t^7.049 - 2*t^7.095 - 2*t^7.136 - t^7.145 - t^7.186 + 3*t^7.439 + 5*t^7.48 + t^7.485 + 2*t^7.489 + 7*t^7.521 + 4*t^7.53 + 2*t^7.535 + t^7.538 + 4*t^7.563 + 4*t^7.571 + t^7.58 + 3*t^7.604 + 2*t^7.612 - 2*t^7.617 + t^7.621 - t^7.626 - 5*t^7.667 - t^7.708 - 2*t^7.717 + t^7.998 + t^8.003 + 2*t^8.011 + 2*t^8.016 + 3*t^8.044 + 4*t^8.052 + 2*t^8.057 + t^8.061 + t^8.066 + 8*t^8.094 + t^8.102 + 2*t^8.135 + 4*t^8.143 - 6*t^8.148 + 2*t^8.176 - t^8.19 + 2*t^8.193 - 2*t^8.198 + t^8.52 + t^8.525 + 2*t^8.534 + 2*t^8.57 + 8*t^8.575 + t^8.583 + t^8.589 + t^8.594 + 4*t^8.616 + 6*t^8.625 + 4*t^8.657 - 3*t^8.666 + 2*t^8.674 - 2*t^8.679 - t^8.707 - 2*t^8.721 + t^8.724 + t^8.765 + 3*t^8.812 - t^4.667/y - t^6.815/y + t^7.814/y + t^8.337/y + (2*t^8.387)/y + t^8.519/y + t^8.854/y + (2*t^8.868)/y + (2*t^8.904)/y + (2*t^8.909)/y + t^8.918/y + (2*t^8.95)/y + t^8.959/y - t^8.964/y - t^4.667*y - t^6.815*y + t^7.814*y + t^8.337*y + 2*t^8.387*y + t^8.519*y + t^8.854*y + 2*t^8.868*y + 2*t^8.904*y + 2*t^8.909*y + t^8.918*y + 2*t^8.95*y + t^8.959*y - t^8.964*y t^2.148/(g1*g2^5) + g2^4*g3^4*g4^4*t^2.666 + g3^5*g4^5*t^3.188 + g2^5*g3^5*t^3.238 + g2^5*g4^5*t^3.238 + (g2^2*g3^7*g4^2*t^3.719)/g1 + (g2^2*g3^2*g4^7*t^3.719)/g1 + g2*g3^6*g4*t^3.761 + g2*g3*g4^6*t^3.761 + (g2^7*g3^2*g4^2*t^3.769)/g1 + g1*g3^5*t^3.802 + g1*g4^5*t^3.802 + g2^6*g3*g4*t^3.81 + (g2^3*g3^3*g4^3*t^4.292)/g1 + t^4.297/(g1^2*g2^10) + g2^2*g3^2*g4^2*t^4.333 + g1*g2*g3*g4*t^4.374 + (g3^4*g4^4*t^4.814)/(g1*g2) + (g3^8*t^4.855)/(g2^2*g4^2) + (g3^3*g4^3*t^4.855)/g2^2 + (g4^8*t^4.855)/(g2^2*g3^2) + (g2^3*g3^3*t^4.905)/g4^2 + (g2^3*g4^3*t^4.905)/g3^2 + (g2^8*t^4.955)/(g3^2*g4^2) + g2^8*g3^8*g4^8*t^5.332 + (g3^5*g4^5*t^5.337)/(g1*g2^5) + (g3^5*t^5.387)/g1 + (g4^5*t^5.387)/g1 + g2^4*g3^9*g4^9*t^5.854 + (g3^7*g4^2*t^5.868)/(g1^2*g2^3) + (g3^2*g4^7*t^5.868)/(g1^2*g2^3) + g2^9*g3^9*g4^4*t^5.904 + g2^9*g3^4*g4^9*t^5.904 + (g3^6*g4*t^5.909)/(g1*g2^4) + (g3*g4^6*t^5.909)/(g1*g2^4) + (g2^2*g3^2*g4^2*t^5.918)/g1^2 - 4*t^6. - (g3^5*t^6.)/g4^5 - (g4^5*t^6.)/g3^5 - (g1*t^6.041)/(g2*g3*g4) - (g2^5*t^6.05)/g3^5 - (g2^5*t^6.05)/g4^5 + g3^10*g4^10*t^6.377 + (g2^6*g3^11*g4^6*t^6.385)/g1 + (g2^6*g3^6*g4^11*t^6.385)/g1 + 2*g2^5*g3^10*g4^5*t^6.426 + 2*g2^5*g3^5*g4^10*t^6.426 + (g2^11*g3^6*g4^6*t^6.435)/g1 + (g3^3*g4^3*t^6.44)/(g1^2*g2^2) + t^6.445/(g1^3*g2^15) + g1*g2^4*g3^9*g4^4*t^6.468 + g1*g2^4*g3^4*g4^9*t^6.468 + g2^10*g3^10*t^6.476 + 2*g2^10*g3^5*g4^5*t^6.476 + g2^10*g4^10*t^6.476 - (g2^2*g3^2*t^6.531)/(g1*g4^3) - (g2^2*g4^2*t^6.531)/(g1*g3^3) - (g1*t^6.564)/g2^5 - (g2*g3*t^6.572)/g4^4 - (g2*g4*t^6.572)/g3^4 - (g1*t^6.613)/g3^5 - (g1*t^6.613)/g4^5 + (g2^2*g3^12*g4^7*t^6.908)/g1 + (g2^2*g3^7*g4^12*t^6.908)/g1 + g2*g3^11*g4^6*t^6.949 + g2*g3^6*g4^11*t^6.949 + (g2^7*g3^12*g4^2*t^6.958)/g1 + (3*g2^7*g3^7*g4^7*t^6.958)/g1 + (g2^7*g3^2*g4^12*t^6.958)/g1 + (g3^4*g4^4*t^6.963)/(g1^2*g2^6) + g1*g3^10*g4^5*t^6.99 + g1*g3^5*g4^10*t^6.99 + g2^6*g3^11*g4*t^6.999 + 3*g2^6*g3^6*g4^6*t^6.999 + g2^6*g3*g4^11*t^6.999 + (g3^8*t^7.004)/(g1*g2^7*g4^2) + (g3^3*g4^3*t^7.004)/(g1*g2^7) + (g4^8*t^7.004)/(g1*g2^7*g3^2) + (g2^12*g3^7*g4^2*t^7.007)/g1 + (g2^12*g3^2*g4^7*t^7.007)/g1 + g1*g2^5*g3^10*t^7.04 + 2*g1*g2^5*g3^5*g4^5*t^7.04 + g1*g2^5*g4^10*t^7.04 + g2^11*g3^6*g4*t^7.049 + g2^11*g3*g4^6*t^7.049 - (g3^2*t^7.095)/(g2^3*g4^3) - (g4^2*t^7.095)/(g2^3*g3^3) - (g1*g3*t^7.136)/(g2^4*g4^4) - (g1*g4*t^7.136)/(g2^4*g3^4) - (g2^2*t^7.145)/(g3^3*g4^3) - (g1*g2*t^7.186)/(g3^4*g4^4) + (g2^4*g3^14*g4^4*t^7.439)/g1^2 + (g2^4*g3^9*g4^9*t^7.439)/g1^2 + (g2^4*g3^4*g4^14*t^7.439)/g1^2 + (g2^3*g3^13*g4^3*t^7.48)/g1 + (3*g2^3*g3^8*g4^8*t^7.48)/g1 + (g2^3*g3^3*g4^13*t^7.48)/g1 + (g3^5*g4^5*t^7.485)/(g1^2*g2^10) + (g2^9*g3^9*g4^4*t^7.489)/g1^2 + (g2^9*g3^4*g4^9*t^7.489)/g1^2 + 2*g2^2*g3^12*g4^2*t^7.521 + 3*g2^2*g3^7*g4^7*t^7.521 + 2*g2^2*g3^2*g4^12*t^7.521 + (2*g2^8*g3^8*g4^3*t^7.53)/g1 + (2*g2^8*g3^3*g4^8*t^7.53)/g1 + (g3^5*t^7.535)/(g1^2*g2^5) + (g4^5*t^7.535)/(g1^2*g2^5) + (g2^14*g3^4*g4^4*t^7.538)/g1^2 + g1*g2*g3^11*g4*t^7.563 + 2*g1*g2*g3^6*g4^6*t^7.563 + g1*g2*g3*g4^11*t^7.563 + 2*g2^7*g3^7*g4^2*t^7.571 + 2*g2^7*g3^2*g4^7*t^7.571 + (g2^13*g3^3*g4^3*t^7.58)/g1 + g1^2*g3^10*t^7.604 + g1^2*g3^5*g4^5*t^7.604 + g1^2*g4^10*t^7.604 + g1*g2^6*g3^6*g4*t^7.612 + g1*g2^6*g3*g4^6*t^7.612 - (g3^3*t^7.617)/(g2^7*g4^2) - (g4^3*t^7.617)/(g2^7*g3^2) + g2^12*g3^2*g4^2*t^7.621 - t^7.626/(g1*g2*g3*g4) - (g3^3*t^7.667)/(g2^2*g4^7) - (3*t^7.667)/(g2^2*g3^2*g4^2) - (g4^3*t^7.667)/(g2^2*g3^7) - (g1*t^7.708)/(g2^3*g3^3*g4^3) - (g2^3*t^7.717)/(g3^2*g4^7) - (g2^3*t^7.717)/(g3^7*g4^2) + g2^12*g3^12*g4^12*t^7.998 + (g3^9*g4^9*t^8.003)/(g1*g2) + (g2^5*g3^10*g4^5*t^8.011)/g1^2 + (g2^5*g3^5*g4^10*t^8.011)/g1^2 + (g3^7*g4^2*t^8.016)/(g1^3*g2^8) + (g3^2*g4^7*t^8.016)/(g1^3*g2^8) + (g3^13*g4^3*t^8.044)/g2^2 + (g3^8*g4^8*t^8.044)/g2^2 + (g3^3*g4^13*t^8.044)/g2^2 + (2*g2^4*g3^9*g4^4*t^8.052)/g1 + (2*g2^4*g3^4*g4^9*t^8.052)/g1 + (g3^6*g4*t^8.057)/(g1^2*g2^9) + (g3*g4^6*t^8.057)/(g1^2*g2^9) + (g2^10*g3^5*g4^5*t^8.061)/g1^2 + (g3^2*g4^2*t^8.066)/(g1^3*g2^3) + (g2^3*g3^13*t^8.094)/g4^2 + 3*g2^3*g3^8*g4^3*t^8.094 + 3*g2^3*g3^3*g4^8*t^8.094 + (g2^3*g4^13*t^8.094)/g3^2 + (g2^9*g3^4*g4^4*t^8.102)/g1 + g1*g2^2*g3^7*g4^2*t^8.135 + g1*g2^2*g3^2*g4^7*t^8.135 + (g2^8*g3^8*t^8.143)/g4^2 + 2*g2^8*g3^3*g4^3*t^8.143 + (g2^8*g4^8*t^8.143)/g3^2 - (4*t^8.148)/(g1*g2^5) - (g3^5*t^8.148)/(g1*g2^5*g4^5) - (g4^5*t^8.148)/(g1*g2^5*g3^5) + g1^2*g2*g3^6*g4*t^8.176 + g1^2*g2*g3*g4^6*t^8.176 - t^8.19/(g2^6*g3*g4) + (g2^13*g3^3*t^8.193)/g4^2 + (g2^13*g4^3*t^8.193)/g3^2 - t^8.198/(g1*g3^5) - t^8.198/(g1*g4^5) + g2^8*g3^13*g4^13*t^8.52 + (g3^10*g4^10*t^8.525)/(g1*g2^5) + (g2*g3^11*g4^6*t^8.534)/g1^2 + (g2*g3^6*g4^11*t^8.534)/g1^2 + g2^13*g3^13*g4^8*t^8.57 + g2^13*g3^8*g4^13*t^8.57 + (g3^15*t^8.575)/g1 + (3*g3^10*g4^5*t^8.575)/g1 + (3*g3^5*g4^10*t^8.575)/g1 + (g4^15*t^8.575)/g1 + (g2^6*g3^6*g4^6*t^8.583)/g1^2 + (g3^3*g4^3*t^8.589)/(g1^3*g2^7) + t^8.594/(g1^4*g2^20) + (g3^14*t^8.616)/(g2*g4) + (g3^9*g4^4*t^8.616)/g2 + (g3^4*g4^9*t^8.616)/g2 + (g4^14*t^8.616)/(g2*g3) + (2*g2^5*g3^10*t^8.625)/g1 + (2*g2^5*g3^5*g4^5*t^8.625)/g1 + (2*g2^5*g4^10*t^8.625)/g1 + (g1*g3^13*t^8.657)/(g2^2*g4^2) + (g1*g3^8*g4^3*t^8.657)/g2^2 + (g1*g3^3*g4^8*t^8.657)/g2^2 + (g1*g4^13*t^8.657)/(g2^2*g3^2) - 3*g2^4*g3^4*g4^4*t^8.666 + (g2^10*g3^5*t^8.674)/g1 + (g2^10*g4^5*t^8.674)/g1 - (g3^2*t^8.679)/(g1^2*g2^3*g4^3) - (g4^2*t^8.679)/(g1^2*g2^3*g3^3) - g1*g2^3*g3^3*g4^3*t^8.707 - (g3*t^8.721)/(g1*g2^4*g4^4) - (g4*t^8.721)/(g1*g2^4*g3^4) + (g2^15*t^8.724)/g1 + (g2^14*t^8.765)/(g3*g4) + t^8.812/g3^10 + t^8.812/g4^10 + t^8.812/(g3^5*g4^5) - t^4.667/(g2^2*g3^2*g4^2*y) - t^6.815/(g1*g2^7*g3^2*g4^2*y) + (g3^4*g4^4*t^7.814)/(g1*g2*y) + (g3^5*g4^5*t^8.337)/(g1*g2^5*y) + (g3^5*t^8.387)/(g1*y) + (g4^5*t^8.387)/(g1*y) + (g1*g2^3*t^8.519)/(g3^2*g4^2*y) + (g2^4*g3^9*g4^9*t^8.854)/y + (g3^7*g4^2*t^8.868)/(g1^2*g2^3*y) + (g3^2*g4^7*t^8.868)/(g1^2*g2^3*y) + (g2^9*g3^9*g4^4*t^8.904)/y + (g2^9*g3^4*g4^9*t^8.904)/y + (g3^6*g4*t^8.909)/(g1*g2^4*y) + (g3*g4^6*t^8.909)/(g1*g2^4*y) + (g2^2*g3^2*g4^2*t^8.918)/(g1^2*y) + (g3^5*t^8.95)/(g2^5*y) + (g4^5*t^8.95)/(g2^5*y) + (g2*g3*g4*t^8.959)/(g1*y) - t^8.964/(g1^2*g2^12*g3^2*g4^2*y) - (t^4.667*y)/(g2^2*g3^2*g4^2) - (t^6.815*y)/(g1*g2^7*g3^2*g4^2) + (g3^4*g4^4*t^7.814*y)/(g1*g2) + (g3^5*g4^5*t^8.337*y)/(g1*g2^5) + (g3^5*t^8.387*y)/g1 + (g4^5*t^8.387*y)/g1 + (g1*g2^3*t^8.519*y)/(g3^2*g4^2) + g2^4*g3^9*g4^9*t^8.854*y + (g3^7*g4^2*t^8.868*y)/(g1^2*g2^3) + (g3^2*g4^7*t^8.868*y)/(g1^2*g2^3) + g2^9*g3^9*g4^4*t^8.904*y + g2^9*g3^4*g4^9*t^8.904*y + (g3^6*g4*t^8.909*y)/(g1*g2^4) + (g3*g4^6*t^8.909*y)/(g1*g2^4) + (g2^2*g3^2*g4^2*t^8.918*y)/g1^2 + (g3^5*t^8.95*y)/g2^5 + (g4^5*t^8.95*y)/g2^5 + (g2*g3*g4*t^8.959*y)/g1 - (t^8.964*y)/(g1^2*g2^12*g3^2*g4^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55690 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}^{2}$ 0.8366 1.0194 0.8207 [M:[0.8786], q:[0.7197, 0.7197, 0.7197], qb:[0.5328, 0.5328, 0.5328], phi:[0.5607]] t^2.636 + 3*t^3.197 + 9*t^3.757 + 3*t^4.318 + 6*t^4.879 + t^5.272 + 3*t^5.832 - 12*t^6. - t^4.682/y - t^4.682*y detail