Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55778 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$ 0.8796 1.0842 0.8112 [M:[0.6694, 0.7382], q:[0.7105, 0.7531, 0.5775], qb:[0.5513, 0.6309, 0.6309], phi:[0.5364]] [M:[[-4, -4, 2, 2], [0, 0, -3, -3]], q:[[0, -3, 3, 3], [1, 4, -2, -2], [3, 0, 0, 0]], qb:[[0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{3}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }M_{1}M_{2}$, ${ }q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{1}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{1}q_{3}$ ${}$ -6 t^2.008 + t^2.214 + t^3.219 + t^3.387 + 2*t^3.547 + 2*t^3.625 + t^3.786 + t^3.864 + t^3.913 + t^4.017 + 2*t^4.024 + 2*t^4.152 + t^4.223 + t^4.391 + t^4.429 + t^4.917 + t^4.996 + t^5.074 + 2*t^5.156 + t^5.227 + 2*t^5.235 + 4*t^5.395 + t^5.433 + 2*t^5.555 + t^5.601 + 2*t^5.634 + t^5.794 + t^5.872 - 6*t^6. + t^6.025 + 2*t^6.033 + t^6.128 + t^6.231 - 2*t^6.239 + 2*t^6.437 - t^6.478 - t^6.527 + t^6.605 + t^6.643 + 2*t^6.765 + t^6.773 + 2*t^6.844 + t^6.926 + 2*t^6.933 + t^7.004 + 2*t^7.012 + t^7.083 + 3*t^7.093 + t^7.132 + 2*t^7.164 + 4*t^7.172 + t^7.235 + 2*t^7.243 + 4*t^7.251 + t^7.289 + t^7.3 + 2*t^7.332 + 4*t^7.403 + 4*t^7.411 + t^7.441 + 2*t^7.46 + 2*t^7.489 - t^7.531 + 2*t^7.538 + 2*t^7.563 + 4*t^7.571 - t^7.609 + 2*t^7.642 + t^7.648 + 4*t^7.65 - t^7.688 + 3*t^7.699 + t^7.728 - 2*t^7.77 + 3*t^7.777 + t^7.802 + 2*t^7.81 + t^7.816 + t^7.826 - 2*t^7.848 - t^7.856 + t^7.881 + 2*t^7.888 + 2*t^7.937 - 6*t^8.008 + t^8.033 + 2*t^8.041 + 3*t^8.049 + 2*t^8.065 + t^8.136 - 2*t^8.214 + t^8.239 - 2*t^8.247 + t^8.293 + 4*t^8.304 + t^8.342 + 2*t^8.375 + 2*t^8.446 + 2*t^8.453 + t^8.461 + 2*t^8.464 - t^8.486 + 4*t^8.543 + 4*t^8.613 + 4*t^8.621 + 2*t^8.652 - t^8.654 + 2*t^8.7 + 4*t^8.703 - t^8.741 + 2*t^8.774 + 8*t^8.781 + t^8.82 + t^8.83 + 2*t^8.852 + t^8.858 + 4*t^8.86 - t^8.909 + t^8.934 + t^8.939 + 8*t^8.942 + t^8.988 - t^4.609/y - t^6.618/y - t^6.824/y + t^7.223/y + t^7.391/y - t^7.828/y + t^8.227/y + (2*t^8.395)/y + t^8.433/y + (2*t^8.555)/y + (2*t^8.601)/y - t^8.626/y + (2*t^8.634)/y + (2*t^8.761)/y + t^8.794/y - t^8.832/y + (2*t^8.84)/y + t^8.872/y + t^8.921/y - t^4.609*y - t^6.618*y - t^6.824*y + t^7.223*y + t^7.391*y - t^7.828*y + t^8.227*y + 2*t^8.395*y + t^8.433*y + 2*t^8.555*y + 2*t^8.601*y - t^8.626*y + 2*t^8.634*y + 2*t^8.761*y + t^8.794*y - t^8.832*y + 2*t^8.84*y + t^8.872*y + t^8.921*y (g3^2*g4^2*t^2.008)/(g1^4*g2^4) + t^2.214/(g3^3*g4^3) + t^3.219/(g1^2*g2^2*g3^2*g4^2) + g1^3*g2^3*t^3.387 + g2^3*g3^3*t^3.547 + g2^3*g4^3*t^3.547 + g1^3*g3^3*t^3.625 + g1^3*g4^3*t^3.625 + g3^3*g4^3*t^3.786 + (g1^3*g3^3*g4^3*t^3.864)/g2^3 + (g1*g2^7*t^3.913)/(g3^2*g4^2) + (g3^4*g4^4*t^4.017)/(g1^8*g2^8) + (g3^6*g4^3*t^4.024)/g2^3 + (g3^3*g4^6*t^4.024)/g2^3 + (g1*g2^4*g3*t^4.152)/g4^2 + (g1*g2^4*g4*t^4.152)/g3^2 + t^4.223/(g1^4*g2^4*g3*g4) + g1*g2*g3*g4*t^4.391 + t^4.429/(g3^6*g4^6) + (g2^5*t^4.917)/(g1*g3*g4) + (g1^2*g2^2*t^4.996)/(g3*g4) + (g1^5*t^5.074)/(g2*g3*g4) + (g2^2*g3^2*t^5.156)/(g1*g4) + (g2^2*g4^2*t^5.156)/(g1*g3) + t^5.227/(g1^6*g2^6) + (g1^2*g3^2*t^5.235)/(g2*g4) + (g1^2*g4^2*t^5.235)/(g2*g3) + (g3^5*t^5.395)/(g1*g2*g4) + (2*g3^2*g4^2*t^5.395)/(g1*g2) + (g4^5*t^5.395)/(g1*g2*g3) + t^5.433/(g1^2*g2^2*g3^5*g4^5) + (g3^5*g4^2*t^5.555)/(g1^4*g2) + (g3^2*g4^5*t^5.555)/(g1^4*g2) + (g1^3*g2^3*t^5.601)/(g3^3*g4^3) + (g3^5*g4^2*t^5.634)/(g1*g2^4) + (g3^2*g4^5*t^5.634)/(g1*g2^4) + (g3^5*g4^5*t^5.794)/(g1^4*g2^4) + (g3^5*g4^5*t^5.872)/(g1*g2^7) - 4*t^6. - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g3^3 + (g3^6*g4^6*t^6.025)/(g1^12*g2^12) + (g3^8*g4^5*t^6.033)/(g1^4*g2^7) + (g3^5*g4^8*t^6.033)/(g1^4*g2^7) + (g1*g2^7*t^6.128)/(g3^5*g4^5) + (g3*g4*t^6.231)/(g1^8*g2^8) - (g3^3*t^6.239)/g2^3 - (g4^3*t^6.239)/g2^3 + (2*t^6.437)/(g1^4*g2^4*g3^4*g4^4) - (g3^3*g4^3*t^6.478)/g2^6 - (g2^4*t^6.527)/(g1^2*g3^2*g4^2) + (g1*g2*t^6.605)/(g3^2*g4^2) + t^6.643/(g3^9*g4^9) + (g2*g3*t^6.765)/(g1^2*g4^2) + (g2*g4*t^6.765)/(g1^2*g3^2) + g1^6*g2^6*t^6.773 + (g1*g3*t^6.844)/(g2^2*g4^2) + (g1*g4*t^6.844)/(g2^2*g3^2) + (g2*g3*g4*t^6.926)/g1^5 + g1^3*g2^6*g3^3*t^6.933 + g1^3*g2^6*g4^3*t^6.933 + (g3*g4*t^7.004)/(g1^2*g2^2) + g1^6*g2^3*g3^3*t^7.012 + g1^6*g2^3*g4^3*t^7.012 + (g1*g3*g4*t^7.083)/g2^5 + g2^6*g3^6*t^7.093 + g2^6*g3^3*g4^3*t^7.093 + g2^6*g4^6*t^7.093 + (g2^5*t^7.132)/(g1*g3^4*g4^4) + (g3^4*g4*t^7.164)/(g1^5*g2^2) + (g3*g4^4*t^7.164)/(g1^5*g2^2) + g1^3*g2^3*g3^6*t^7.172 + 2*g1^3*g2^3*g3^3*g4^3*t^7.172 + g1^3*g2^3*g4^6*t^7.172 + (g3^2*g4^2*t^7.235)/(g1^10*g2^10) + (g3^4*g4*t^7.243)/(g1^2*g2^5) + (g3*g4^4*t^7.243)/(g1^2*g2^5) + g1^6*g3^6*t^7.251 + 2*g1^6*g3^3*g4^3*t^7.251 + g1^6*g4^6*t^7.251 + (g1^5*t^7.289)/(g2*g3^4*g4^4) + (g1^4*g2^10*t^7.3)/(g3^2*g4^2) + g2^3*g3^6*g4^3*t^7.332 + g2^3*g3^3*g4^6*t^7.332 + (g3^7*g4*t^7.403)/(g1^5*g2^5) + (2*g3^4*g4^4*t^7.403)/(g1^5*g2^5) + (g3*g4^7*t^7.403)/(g1^5*g2^5) + 2*g1^3*g3^6*g4^3*t^7.411 + 2*g1^3*g3^3*g4^6*t^7.411 + t^7.441/(g1^6*g2^6*g3^3*g4^3) + (g1*g2^10*g3*t^7.46)/g4^2 + (g1*g2^10*g4*t^7.46)/g3^2 + (g1^6*g3^6*g4^3*t^7.489)/g2^3 + (g1^6*g3^3*g4^6*t^7.489)/g2^3 - (g2^2*t^7.531)/(g1^4*g3*g4) + (g1^4*g2^7*g3*t^7.538)/g4^2 + (g1^4*g2^7*g4*t^7.538)/g3^2 + (g3^7*g4^4*t^7.563)/(g1^8*g2^5) + (g3^4*g4^7*t^7.563)/(g1^8*g2^5) + g3^9*g4^3*t^7.571 + 2*g3^6*g4^6*t^7.571 + g3^3*g4^9*t^7.571 - t^7.609/(g1*g2*g3*g4) + (g3^7*g4^4*t^7.642)/(g1^5*g2^8) + (g3^4*g4^7*t^7.642)/(g1^5*g2^8) + t^7.648/(g1^2*g2^2*g3^8*g4^8) + (g1^3*g3^9*g4^3*t^7.65)/g2^3 + (2*g1^3*g3^6*g4^6*t^7.65)/g2^3 + (g1^3*g3^3*g4^9*t^7.65)/g2^3 - (g1^2*t^7.688)/(g2^4*g3*g4) + (g1*g2^7*g3^4*t^7.699)/g4^2 + g1*g2^7*g3*g4*t^7.699 + (g1*g2^7*g4^4*t^7.699)/g3^2 + (g1^6*g3^6*g4^6*t^7.728)/g2^6 - (g3^2*t^7.77)/(g1^4*g2*g4) - (g4^2*t^7.77)/(g1^4*g2*g3) + (g1^4*g2^4*g3^4*t^7.777)/g4^2 + g1^4*g2^4*g3*g4*t^7.777 + (g1^4*g2^4*g4^4*t^7.777)/g3^2 + (g3^7*g4^7*t^7.802)/(g1^8*g2^8) + (g3^9*g4^6*t^7.81)/g2^3 + (g3^6*g4^9*t^7.81)/g2^3 + (g1^3*g2^3*t^7.816)/(g3^6*g4^6) + (g1^2*g2^14*t^7.826)/(g3^4*g4^4) - (g3^2*t^7.848)/(g1*g2^4*g4) - (g4^2*t^7.848)/(g1*g2^4*g3) - g1^7*g2*g3*g4*t^7.856 + (g3^7*g4^7*t^7.881)/(g1^5*g2^11) + (g1^3*g3^9*g4^6*t^7.888)/g2^6 + (g1^3*g3^6*g4^9*t^7.888)/g2^6 + g1*g2^4*g3^4*g4*t^7.937 + g1*g2^4*g3*g4^4*t^7.937 - (g3^5*t^8.008)/(g1^4*g2^4*g4) - (4*g3^2*g4^2*t^8.008)/(g1^4*g2^4) - (g4^5*t^8.008)/(g1^4*g2^4*g3) + (g3^8*g4^8*t^8.033)/(g1^16*g2^16) + (g3^10*g4^7*t^8.041)/(g1^8*g2^11) + (g3^7*g4^10*t^8.041)/(g1^8*g2^11) + (g3^12*g4^6*t^8.049)/g2^6 + (g3^9*g4^9*t^8.049)/g2^6 + (g3^6*g4^12*t^8.049)/g2^6 + (g1^2*g2^11*t^8.065)/(g3*g4^4) + (g1^2*g2^11*t^8.065)/(g3^4*g4) + (g2^3*t^8.136)/(g1^3*g3^3*g4^3) - (2*t^8.214)/(g3^3*g4^3) + (g3^3*g4^3*t^8.239)/(g1^12*g2^12) - (g3^5*g4^2*t^8.247)/(g1^4*g2^7) - (g3^2*g4^5*t^8.247)/(g1^4*g2^7) + (g1^3*t^8.293)/(g2^3*g3^3*g4^3) + (g1^2*g2^8*g3^2*t^8.304)/g4^4 + (2*g1^2*g2^8*t^8.304)/(g3*g4) + (g1^2*g2^8*g4^2*t^8.304)/g3^4 + (g1*g2^7*t^8.342)/(g3^8*g4^8) + t^8.375/(g1^3*g3^3) + t^8.375/(g1^3*g4^3) + (2*t^8.446)/(g1^8*g2^8*g3^2*g4^2) + t^8.453/(g2^3*g3^3) + t^8.453/(g2^3*g4^3) + (g1^8*g2^2*t^8.461)/(g3*g4) + (g2^8*g3^2*t^8.464)/(g1*g4) + (g2^8*g4^2*t^8.464)/(g1*g3) - (g3^5*g4^5*t^8.486)/(g1^4*g2^10) + (2*g1^2*g2^5*g3^2*t^8.543)/g4 + (2*g1^2*g2^5*g4^2*t^8.543)/g3 + (2*t^8.613)/(g1^3*g2^3) + (g3^3*t^8.613)/(g1^3*g2^3*g4^3) + (g4^3*t^8.613)/(g1^3*g2^3*g3^3) + (2*g1^5*g2^2*g3^2*t^8.621)/g4 + (2*g1^5*g2^2*g4^2*t^8.621)/g3 + (2*t^8.652)/(g1^4*g2^4*g3^7*g4^7) - (g1*g3^7*g4^7*t^8.654)/g2^5 + (g1^8*g3^2*t^8.7)/(g2*g4) + (g1^8*g4^2*t^8.7)/(g2*g3) + (g2^5*g3^5*t^8.703)/(g1*g4) + (2*g2^5*g3^2*g4^2*t^8.703)/g1 + (g2^5*g4^5*t^8.703)/(g1*g3) - (g2^4*t^8.741)/(g1^2*g3^5*g4^5) + (g3^3*t^8.774)/(g1^6*g2^3) + (g4^3*t^8.774)/(g1^6*g2^3) + (2*g1^2*g2^2*g3^5*t^8.781)/g4 + 4*g1^2*g2^2*g3^2*g4^2*t^8.781 + (2*g1^2*g2^2*g4^5*t^8.781)/g3 + (g1*g2*t^8.82)/(g3^5*g4^5) + (g2^12*t^8.83)/(g3^3*g4^3) + (g3^3*t^8.852)/(g1^3*g2^6) + (g4^3*t^8.852)/(g1^3*g2^6) + t^8.858/(g3^12*g4^12) + (g1^5*g3^5*t^8.86)/(g2*g4) + (2*g1^5*g3^2*g4^2*t^8.86)/g2 + (g1^5*g4^5*t^8.86)/(g2*g3) - (g1^3*g2^9*t^8.909)/(g3^3*g4^3) + (g3^3*g4^3*t^8.934)/(g1^9*g2^3) + (g1^8*g3^2*g4^2*t^8.939)/g2^4 + (g2^2*g3^8*t^8.942)/(g1*g4) + (3*g2^2*g3^5*g4^2*t^8.942)/g1 + (3*g2^2*g3^2*g4^5*t^8.942)/g1 + (g2^2*g4^8*t^8.942)/(g1*g3) + (g1^6*g2^6*t^8.988)/(g3^3*g4^3) - t^4.609/(g1*g2*g3*g4*y) - (g3*g4*t^6.618)/(g1^5*g2^5*y) - t^6.824/(g1*g2*g3^4*g4^4*y) + t^7.223/(g1^4*g2^4*g3*g4*y) + (g1*g2*g3*g4*t^7.391)/y - t^7.828/(g1^3*g2^3*g3^3*g4^3*y) + t^8.227/(g1^6*g2^6*y) + (2*g3^2*g4^2*t^8.395)/(g1*g2*y) + t^8.433/(g1^2*g2^2*g3^5*g4^5*y) + (g3^5*g4^2*t^8.555)/(g1^4*g2*y) + (g3^2*g4^5*t^8.555)/(g1^4*g2*y) + (2*g1^3*g2^3*t^8.601)/(g3^3*g4^3*y) - (g3^3*g4^3*t^8.626)/(g1^9*g2^9*y) + (g3^5*g4^2*t^8.634)/(g1*g2^4*y) + (g3^2*g4^5*t^8.634)/(g1*g2^4*y) + (g2^3*t^8.761)/(g3^3*y) + (g2^3*t^8.761)/(g4^3*y) + (g3^5*g4^5*t^8.794)/(g1^4*g2^4*y) - t^8.832/(g1^5*g2^5*g3^2*g4^2*y) + (g1^3*t^8.84)/(g3^3*y) + (g1^3*t^8.84)/(g4^3*y) + (g3^5*g4^5*t^8.872)/(g1*g2^7*y) + (g2^3*t^8.921)/(g1^3*y) - (t^4.609*y)/(g1*g2*g3*g4) - (g3*g4*t^6.618*y)/(g1^5*g2^5) - (t^6.824*y)/(g1*g2*g3^4*g4^4) + (t^7.223*y)/(g1^4*g2^4*g3*g4) + g1*g2*g3*g4*t^7.391*y - (t^7.828*y)/(g1^3*g2^3*g3^3*g4^3) + (t^8.227*y)/(g1^6*g2^6) + (2*g3^2*g4^2*t^8.395*y)/(g1*g2) + (t^8.433*y)/(g1^2*g2^2*g3^5*g4^5) + (g3^5*g4^2*t^8.555*y)/(g1^4*g2) + (g3^2*g4^5*t^8.555*y)/(g1^4*g2) + (2*g1^3*g2^3*t^8.601*y)/(g3^3*g4^3) - (g3^3*g4^3*t^8.626*y)/(g1^9*g2^9) + (g3^5*g4^2*t^8.634*y)/(g1*g2^4) + (g3^2*g4^5*t^8.634*y)/(g1*g2^4) + (g2^3*t^8.761*y)/g3^3 + (g2^3*t^8.761*y)/g4^3 + (g3^5*g4^5*t^8.794*y)/(g1^4*g2^4) - (t^8.832*y)/(g1^5*g2^5*g3^2*g4^2) + (g1^3*t^8.84*y)/g3^3 + (g1^3*t^8.84*y)/g4^3 + (g3^5*g4^5*t^8.872*y)/(g1*g2^7) + (g2^3*t^8.921*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55687 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.8849 1.0955 0.8078 [M:[0.6795, 0.6795], q:[0.7272, 0.7272, 0.5933], qb:[0.5933, 0.5882, 0.5882], phi:[0.5457]] 2*t^2.039 + t^3.274 + t^3.529 + 4*t^3.545 + t^3.56 + 4*t^3.946 + 2*t^3.961 + 3*t^4.077 + t^4.363 + 3*t^5.166 + 4*t^5.182 + 3*t^5.197 + 2*t^5.313 + 2*t^5.568 + 8*t^5.583 + 2*t^5.598 + 4*t^5.985 - 5*t^6. - t^4.637/y - t^4.637*y detail