Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55805 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.8977 1.1025 0.8142 [X:[], M:[0.7303, 0.7303], q:[0.6348, 0.6348, 0.6348], qb:[0.6348, 0.6348, 0.6348], phi:[0.5477]] [X:[], M:[[0, -4, -4, 0], [0, -4, -4, 0]], q:[[-1, 4, 4, 0], [1, 0, 0, 0], [0, 4, 4, -1]], qb:[[0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 1]], phi:[[0, -3, -3, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ M_1\phi_1^2$, $ M_2\phi_1^2$ $M_2q_1q_3$, $ M_2q_2q_3$, $ M_2q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$ -10 2*t^2.19 + t^3.29 + 13*t^3.81 + 3*t^4.38 + 21*t^5.45 + 2*t^5.48 - 10*t^6. + 5*t^6.57 + 13*t^7.1 + 76*t^7.62 + 7*t^7.64 + 3*t^7.67 - 21*t^8.17 - 12*t^8.19 + 21*t^8.74 + 7*t^8.76 - t^4.64/y - (2*t^6.83)/y + t^7.36/y + t^7.38/y - t^7.93/y + (2*t^8.45)/y + (2*t^8.48)/y - t^4.64*y - 2*t^6.83*y + t^7.36*y + t^7.38*y - t^7.93*y + 2*t^8.45*y + 2*t^8.48*y (2*t^2.19)/(g2^4*g3^4) + t^3.29/(g2^6*g3^6) + g1*g2^4*t^3.81 + g1*g3^4*t^3.81 + g2^4*g3^4*t^3.81 + (g2^8*g3^4*t^3.81)/g1 + (g2^4*g3^8*t^3.81)/g1 + (g1*g2^4*g3^4*t^3.81)/g4 + (g2^8*g3^4*t^3.81)/g4 + (g2^4*g3^8*t^3.81)/g4 + (g2^8*g3^8*t^3.81)/(g1*g4) + g1*g4*t^3.81 + g2^4*g4*t^3.81 + g3^4*g4*t^3.81 + (g2^4*g3^4*g4*t^3.81)/g1 + (3*t^4.38)/(g2^8*g3^8) + (g1^2*t^5.45)/(g2^3*g3^3) + (g1*g2*t^5.45)/g3^3 + (g2^5*t^5.45)/g3^3 + (g1*g3*t^5.45)/g2^3 + 3*g2*g3*t^5.45 + (g2^5*g3*t^5.45)/g1 + (g3^5*t^5.45)/g2^3 + (g2*g3^5*t^5.45)/g1 + (g2^5*g3^5*t^5.45)/g1^2 + (g2^5*g3^5*t^5.45)/g4^2 + (g1*g2*g3*t^5.45)/g4 + (g2^5*g3*t^5.45)/g4 + (g2*g3^5*t^5.45)/g4 + (g2^5*g3^5*t^5.45)/(g1*g4) + (g1*g4*t^5.45)/(g2^3*g3^3) + (g2*g4*t^5.45)/g3^3 + (g3*g4*t^5.45)/g2^3 + (g2*g3*g4*t^5.45)/g1 + (g4^2*t^5.45)/(g2^3*g3^3) + (2*t^5.48)/(g2^10*g3^10) - 4*t^6. - (g1^2*t^6.)/(g2^4*g3^4) - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g2^4*g3^4*t^6.)/g1^2 - (g2^4*g3^4*t^6.)/g4^2 - (g4^2*t^6.)/(g2^4*g3^4) + (5*t^6.57)/(g2^12*g3^12) + (g1*t^7.1)/(g2^2*g3^6) + (g1*t^7.1)/(g2^6*g3^2) + t^7.1/(g2^2*g3^2) + (g2^2*t^7.1)/(g1*g3^2) + (g3^2*t^7.1)/(g1*g2^2) + (g1*t^7.1)/(g2^2*g3^2*g4) + (g2^2*t^7.1)/(g3^2*g4) + (g3^2*t^7.1)/(g2^2*g4) + (g2^2*g3^2*t^7.1)/(g1*g4) + (g1*g4*t^7.1)/(g2^6*g3^6) + (g4*t^7.1)/(g2^2*g3^6) + (g4*t^7.1)/(g2^6*g3^2) + (g4*t^7.1)/(g1*g2^2*g3^2) + g1^2*g2^8*t^7.62 + 2*g1^2*g2^4*g3^4*t^7.62 + 2*g1*g2^8*g3^4*t^7.62 + 2*g2^12*g3^4*t^7.62 + g1^2*g3^8*t^7.62 + 2*g1*g2^4*g3^8*t^7.62 + 4*g2^8*g3^8*t^7.62 + (2*g2^12*g3^8*t^7.62)/g1 + (g2^16*g3^8*t^7.62)/g1^2 + 2*g2^4*g3^12*t^7.62 + (2*g2^8*g3^12*t^7.62)/g1 + (2*g2^12*g3^12*t^7.62)/g1^2 + (g2^8*g3^16*t^7.62)/g1^2 + (g1^2*g2^8*g3^8*t^7.62)/g4^2 + (g1*g2^12*g3^8*t^7.62)/g4^2 + (g2^16*g3^8*t^7.62)/g4^2 + (g1*g2^8*g3^12*t^7.62)/g4^2 + (2*g2^12*g3^12*t^7.62)/g4^2 + (g2^16*g3^12*t^7.62)/(g1*g4^2) + (g2^8*g3^16*t^7.62)/g4^2 + (g2^12*g3^16*t^7.62)/(g1*g4^2) + (g2^16*g3^16*t^7.62)/(g1^2*g4^2) + (g1^2*g2^8*g3^4*t^7.62)/g4 + (g1*g2^12*g3^4*t^7.62)/g4 + (g1^2*g2^4*g3^8*t^7.62)/g4 + (2*g1*g2^8*g3^8*t^7.62)/g4 + (2*g2^12*g3^8*t^7.62)/g4 + (g2^16*g3^8*t^7.62)/(g1*g4) + (g1*g2^4*g3^12*t^7.62)/g4 + (2*g2^8*g3^12*t^7.62)/g4 + (2*g2^12*g3^12*t^7.62)/(g1*g4) + (g2^16*g3^12*t^7.62)/(g1^2*g4) + (g2^8*g3^16*t^7.62)/(g1*g4) + (g2^12*g3^16*t^7.62)/(g1^2*g4) + g1^2*g2^4*g4*t^7.62 + g1*g2^8*g4*t^7.62 + g1^2*g3^4*g4*t^7.62 + 2*g1*g2^4*g3^4*g4*t^7.62 + 2*g2^8*g3^4*g4*t^7.62 + (g2^12*g3^4*g4*t^7.62)/g1 + g1*g3^8*g4*t^7.62 + 2*g2^4*g3^8*g4*t^7.62 + (2*g2^8*g3^8*g4*t^7.62)/g1 + (g2^12*g3^8*g4*t^7.62)/g1^2 + (g2^4*g3^12*g4*t^7.62)/g1 + (g2^8*g3^12*g4*t^7.62)/g1^2 + g1^2*g4^2*t^7.62 + g1*g2^4*g4^2*t^7.62 + g2^8*g4^2*t^7.62 + g1*g3^4*g4^2*t^7.62 + 2*g2^4*g3^4*g4^2*t^7.62 + (g2^8*g3^4*g4^2*t^7.62)/g1 + g3^8*g4^2*t^7.62 + (g2^4*g3^8*g4^2*t^7.62)/g1 + (g2^8*g3^8*g4^2*t^7.62)/g1^2 + (g1^2*t^7.64)/(g2^7*g3^7) + (g2*t^7.64)/g3^7 + t^7.64/(g2^3*g3^3) + (g3*t^7.64)/g2^7 + (g2*g3*t^7.64)/g1^2 + (g2*g3*t^7.64)/g4^2 + (g4^2*t^7.64)/(g2^7*g3^7) + (3*t^7.67)/(g2^14*g3^14) - g1^2*g2^3*g3^3*t^8.17 - g1*g2^7*g3^3*t^8.17 - g2^11*g3^3*t^8.17 - g1*g2^3*g3^7*t^8.17 - 3*g2^7*g3^7*t^8.17 - (g2^11*g3^7*t^8.17)/g1 - g2^3*g3^11*t^8.17 - (g2^7*g3^11*t^8.17)/g1 - (g2^11*g3^11*t^8.17)/g1^2 - (g2^11*g3^11*t^8.17)/g4^2 - (g1*g2^7*g3^7*t^8.17)/g4 - (g2^11*g3^7*t^8.17)/g4 - (g2^7*g3^11*t^8.17)/g4 - (g2^11*g3^11*t^8.17)/(g1*g4) - g1*g2^3*g3^3*g4*t^8.17 - g2^7*g3^3*g4*t^8.17 - g2^3*g3^7*g4*t^8.17 - (g2^7*g3^7*g4*t^8.17)/g1 - g2^3*g3^3*g4^2*t^8.17 - t^8.19/g1^2 - t^8.19/g2^8 - t^8.19/g3^8 - (g1^2*t^8.19)/(g2^8*g3^8) - (6*t^8.19)/(g2^4*g3^4) - t^8.19/g4^2 - (g4^2*t^8.19)/(g2^8*g3^8) + (g1^2*t^8.74)/(g2^9*g3^9) + (g1*t^8.74)/(g2^5*g3^9) + t^8.74/(g2*g3^9) + (g1*t^8.74)/(g2^9*g3^5) + (3*t^8.74)/(g2^5*g3^5) + t^8.74/(g1*g2*g3^5) + t^8.74/(g2^9*g3) + t^8.74/(g1*g2^5*g3) + t^8.74/(g1^2*g2*g3) + t^8.74/(g2*g3*g4^2) + (g1*t^8.74)/(g2^5*g3^5*g4) + t^8.74/(g2*g3^5*g4) + t^8.74/(g2^5*g3*g4) + t^8.74/(g1*g2*g3*g4) + (g1*g4*t^8.74)/(g2^9*g3^9) + (g4*t^8.74)/(g2^5*g3^9) + (g4*t^8.74)/(g2^9*g3^5) + (g4*t^8.74)/(g1*g2^5*g3^5) + (g4^2*t^8.74)/(g2^9*g3^9) + (7*t^8.76)/(g2^16*g3^16) - t^4.64/(g2^3*g3^3*y) - (2*t^6.83)/(g2^7*g3^7*y) + (g2^3*g3^3*t^7.36)/y + t^7.38/(g2^8*g3^8*y) - t^7.93/(g2^9*g3^9*y) + (2*g2*g3*t^8.45)/y + (2*t^8.48)/(g2^10*g3^10*y) - (t^4.64*y)/(g2^3*g3^3) - (2*t^6.83*y)/(g2^7*g3^7) + g2^3*g3^3*t^7.36*y + (t^7.38*y)/(g2^8*g3^8) - (t^7.93*y)/(g2^9*g3^9) + 2*g2*g3*t^8.45*y + (2*t^8.48*y)/(g2^10*g3^10)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55682 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ 0.878 1.0676 0.8224 [X:[], M:[0.7394], q:[0.6303, 0.6303, 0.6303], qb:[0.6303, 0.6303, 0.6303], phi:[0.5545]] t^2.22 + t^3.33 + 14*t^3.78 + t^4.44 + 21*t^5.45 + t^5.55 - 22*t^6. - t^4.66/y - t^4.66*y detail